首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Dynamic Tanker Steering Control Using Generalized Ellipsoidal-Basis-Function-Based Fuzzy Neural Networks
【24h】

Dynamic Tanker Steering Control Using Generalized Ellipsoidal-Basis-Function-Based Fuzzy Neural Networks

机译:基于广义椭圆基函数的模糊神经网络的动态油轮转向控制

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with tanker steering control based on a novel multiple-input multiple-output generalized ellipsoidal-basis-function-based fuzzy neural network (GEBF-FNN) with online updating of system structure and parameters. The main contributions of this paper are as follows. 1) A GEBF-FNN-based nonlinear steering model incorporating the nonlinearity underlying tanker dynamics is proposed. 2) The static local controller (SLC), whose controller gains are locally fixed with the initial forward speed and the desired heading for individual steering commands, is implemented. 3) The dynamic local controller (DLC) is further realized by employing adaptive controller gains pertaining to time-varying forward speed and heading dynamics. 4) The GEBF-FNN-based steering controller is developed by identifying a nonlinear mapping from the heading error, acceleration and forward speed to dynamic controller gains, and thereby contributing to a model-free adaptive control scheme. Simulation results and comprehensive studies on benchmark problems demonstrate that the GEBF-FNN-based model can capture the essential tanker dynamics, and the proposed SLC, DLC, and GEBF-FNN-based schemes achieve superior performance in terms of heading regulation and forward speed loss. In comparison with the SLC and traditional fuzzy controllers, the DLC and GEBF-FNN-based controllers achieve higher accuracy of heading regulation with less rudder efforts and minimal forward speed losses.
机译:本文研究了基于新型多输入多输出广义基于椭球基函数的模糊神经网络(GEBF-FNN)的油轮转向控制,并在线更新系统结构和参数。本文的主要贡献如下。 1)提出了一种基于GEBF-FNN的非线性转向模型,该模型结合了油轮动力学的非线性特性。 2)实现了静态本地控制器(SLC),其控制器增益与初始前进速度和各个转向命令的期望航向在本地固定。 3)通过采用与时变前进速度和航向动态有关的自适应控制器增益,进一步实现动态本地控制器(DLC)。 4)通过识别从航向误差,加速度和前进速度到动态控制器增益的非线性映射,开发出基于GEBF-FNN的转向控制器,从而为无模型自适应控制方案做出了贡献。仿真结果和对基准问题的综合研究表明,基于GEBF-FNN的模型可以捕获基本的油轮动力学,并且所提出的SLC,DLC和基于GEBF-FNN的方案在航向调节和前进速度损失方面均具有出色的性能。 。与SLC和传统的模糊控制器相比,基于DLC和GEBF-FNN的控制器以更少的方向舵工作量和最小的前进速度损失实现了更高的航向调节精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号