首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >A Model Based on Linguistic 2-Tuples for Dealing With Heterogeneous Relationship Among Attributes in Multi-expert Decision Making
【24h】

A Model Based on Linguistic 2-Tuples for Dealing With Heterogeneous Relationship Among Attributes in Multi-expert Decision Making

机译:基于语言二元组的多专家决策中属性间异构关系处理模型

获取原文
获取原文并翻译 | 示例

摘要

Classical Bonferroni mean, defined by Bonferroni in 1950, assumes homogeneous relation among the attributes, i.e., each attribute is related to the rest of the attributes , where denotes the attribute set. In this paper, we emphasize the importance of having an aggregation operator, which we will refer to as the extended Bonferroni mean (EBM) operator to capture heterogeneous interrelationship among the attributes. We provide an interpretation of “heterogeneous interrelationship” by assuming that some of the attributes, which are denoted as , are related to a subset of the set , and others have no relation with the remaining attributes. We provide an interpretation of this operator as computing different aggregated values for a given set of inputs as interrelationship pattern is changed. We also investigate the behavior of the proposed EBM aggregation operator. Furthermore, to investigate a multiattribute group decision making (MAGDM) problem with linguistic information, we analyze the proposed EBM operator in linguistic 2-tuple environment and develop three new linguistic aggregation operators: 2-tuple linguistic EBM, weighted 2-tuple linguistic EBM, and linguistic weighted 2-tuple linguistic EBM. A concept of linguistic similarity measure of 2-tuple linguistic information is introduced. Subsequently, an MAGDM technique is developed, in which the attributes’ weights are in the form of 2-tuple linguistic information and experts’ weights information is completely unknown. Finally, a practical exam- le is presented to demonstrate the applicability of our results.
机译:Bonferroni在1950年定义的经典Bonferroni均值假设属性之间具有均一的关系,即每个属性与其余属性相关,其中表示属性集。在本文中,我们强调拥有聚合算子的重要性,我们将其称为扩展Bonferroni均值(EBM)算子,以捕获属性之间的异构相互关系。我们通过假设某些属性(表示为)与集合的子集相关,而其他属性与其余属性无关,来提供对“异构相互关系”的解释。我们对这种运算符的解释是,随着相互关系模式的改变,对于给定的一组输入计算不同的合计值。我们还调查了建议的EBM聚合算子的行为。此外,为了研究带有语言信息的多属性群决策(MAGDM)问题,我们分析了语言2元组环境中拟议的EBM算子,并开发了三种新的语言聚合算子:2元语言EBM,加权2元语言EBM,语言加权2元组语言EBM。介绍了二元组语言信息的语言相似性度量的概念。随后,开发了MAGDM技术,其中属性的权重采用2元组语言信息的形式,而专家的权重信息则完全未知。最后,提出了一个实践性的例子来证明我们的结果的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号