首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Fuzzy src='/images/tex/30150.gif' alt='(c+p)'> -Means Clustering and Its Application to a Fuzzy Rule-Based Classifier: Toward Good Generalization and Good Interpretability
【24h】

Fuzzy src='/images/tex/30150.gif' alt='(c+p)'> -Means Clustering and Its Application to a Fuzzy Rule-Based Classifier: Toward Good Generalization and Good Interpretability

机译:模糊 src =“ / images / tex / 30150.gif” alt =“(c + p)”> -均值聚类及其在基于规则的模糊分类器中的应用:追求良好的概括性和良好的可解释性

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new classifier design method based on a modification of the classical fuzzy -means clustering. First, a new fuzzy -means clustering with constant prototypes is proposed. This method can be considered a generalization of the concept of the conditional fuzzy clustering with some prototypes known. A special initialization of the prototypes is introduced. Next, the proposed clustering method is used to construct the premises of an rule-based classifier. The conclusions of these rules are obtained by minimization of a criterion function with various approximations of a misclassification error (e.g., based on the quadratic, the linear, the sigmoidal or the Huber's loss function). The conjugate gradient algorithm is used to minimize the proposed criterion function. Each rule is represented in the Mamdani–Assilan form, which has good interpretability. Finally, an extensive experimental analysis on 14 benchmark datasets is performed to demonstrate the validity of the classifier introduced. Its competitiveness to the state-of-the-art classifiers, with respect to both performance and interpretability, is also shown.
机译:本文介绍了一种基于经典模糊均值聚类的改进分类器设计方法。首先,提出了一种具有不变原型的模糊均值聚类算法。该方法可以被认为是对带有一些已知原型的条件模糊聚类概念的概括。介绍了原型的特殊初始化。接下来,所提出的聚类方法用于构建基于规则的分类器的前提。这些规则的结论是通过最小化具有误分类误差的各种近似值的准则函数而获得的(例如,基于二次函数,线性函数,S形函数或Huber损失函数)。共轭梯度算法用于最小化建议的标准函数。每个规则都以Mamdani–Assilan形式表示,具有良好的可解释性。最后,对14个基准数据集进行了广泛的实验分析,以证明引入的分类器的有效性。在性能和可解释性方面,还显示了其与最新分类器的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号