首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Energy Efficient Task Scheduling for Real-Time Embedded Systems in a Fuzzy Uncertain Environment
【24h】

Energy Efficient Task Scheduling for Real-Time Embedded Systems in a Fuzzy Uncertain Environment

机译:模糊不实环境中实时嵌入式系统的节能任务调度

获取原文
获取原文并翻译 | 示例

摘要

During the designing phase of real-time embedded systems (RTESs), available information on task characteristics is either incomplete or imprecise. So, task timing constraints are mostly approximated estimations by designers. This indicates that there are underlying uncertainties in these timing constraints, which can be appropriately modeled using fuzzy numbers. Moreover, feasible scheduling of tasks and energy efficiency are two essential requirements for better utilization and durability of RTESs. Thus, justifiable performance of this kind of systems warrants energy savings amid timely production of the computational outputs, although these two issues are mutually contradictory. This article reports a novel formulation of the energy efficient real-time scheduling problem in a fuzzy uncertain environment and proposes a novel solution approach called "epsilon-constraint coupled energy efficient genetic algorithm (epsilon-EEGA)." The working of the proposed approach is demonstrated taking a real-life example. Also, a thorough comparative analysis is provided considering well-known existing approaches including multiobjective evolutionary algorithms. Results are compared using popular performance metrics, which suggests that the proposed epsilon-EEGA is efficient in giving better energy savings with faster computations than its existing counterparts. Standard statistical tests such as analysis of variance and Kruskal-Wallis are performed.
机译:在实时嵌入式系统(RTESS)的设计阶段,有关任务特征的可用信息是不完整或不精确的。因此,任务时序约束由设计者大多数近似估计。这表明这些时序约束中存在潜在的不确定性,可以使用模糊数进行适当建模。此外,可行的任务和能源效率的调度是更好利用和腐蚀性的两个基本要求。因此,这种系统的合理性能保证了节能在水平生产计算产出时,尽管这两个问题是相互矛盾的。本文报告了模糊不确定环境中节能实时调度问题的新型制定,并提出了一种称为“epsilon-约束耦合节能遗传算法(epsilon-eega)的新型解决方案方法”。拟议的方法的工作是呈现实际榜样的。此外,考虑众所周知的现有方法,提供了彻底的比较分析,包括多目标进化算法。使用流行的性能指标进行比较结果,这表明所提出的epsilon-eega是有效的,在提供比其现有的同行更快的计算更好的计算能节省。进行标准统计测试,例如方差分析和Kruskal-Wallis。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号