机译:Comhisp:基于模糊SVM的组织病理学图像分类的新特征提取器,其基于级别的相对密度
Department of Computer Science and Engineering Indian Institute of Technology BHU Varanasi India;
Department of Computer Science and Engineering Indian Institute of Technology BHU Varanasi India;
Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute Izatnagar Bareilly India;
Department of Computer Science and Engineering NIT Patna Patna India;
Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute Izatnagar Bareilly India;
Department of Computer Science and Engineering Indian Institute of Technology BHU Varanasi India;
Department of Computer Science and Engineering Thapar Institute of Engineering and Technology (Deemed University) Patiala India;
Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute Izatnagar Bareilly India;
Feature extraction; Tumors; Support vector machines; Image analysis; Breast cancer; Uncertainty;
机译:基于SVM的集成分类的非均匀随机特征选择和核密度评分用于高光谱图像分析
机译:基于次盲的特征的麻木分析,用于校准JPEG图像,使用SVM和SVM-PSO分类交叉验证和分类
机译:基于纹理特征和模糊SVM分类器的MR图像脑肿瘤检测和分类
机译:基于距离特征选择和模糊支持向量机的超声医学图像分类
机译:类内和无监督聚类可提高准确性并提取局部结构以进行有监督的分类。
机译:使用直觉可能性模糊C均值聚类和模糊SVM算法的医学图像中有效的分割和分类系统
机译:表5:SVM分类器对具有DBAP层的预先训练的Lenet派生的DBAP特征的精度。 DBAP功能显示比LENET中的MAXPOOL功能更好的分类结果。与DBAP的完全连接(FC)LENET的层也倾向于显示与在所有基准数据集上从常规LENET提取的FC层特征相比显示出更好的辨别能力。
机译:FLIR图像的ICa特征提取与sVm分类