首页> 外文期刊>IEEE Transactions on Fuzzy Systems >CoMHisP: A Novel Feature Extractor for Histopathological Image Classification Based on Fuzzy SVM With Within-Class Relative Density
【24h】

CoMHisP: A Novel Feature Extractor for Histopathological Image Classification Based on Fuzzy SVM With Within-Class Relative Density

机译:Comhisp:基于模糊SVM的组织病理学图像分类的新特征提取器,其基于级别的相对密度

获取原文
获取原文并翻译 | 示例

摘要

Machine learning (ML) has emerged as a powerful tool for pattern recognition. Traditional ML algorithms have limited ability to reveal the most sophisticated features of cancer histopathological images, but their robustness and fault tolerance can be enhanced by using fuzzy modeling to capture the uncertainty in image data. Therefore, this article proposes a novel CoMHisP framework based on a fuzzy support vector machine with within-class density information (FSVM-WD). It utilizes a novel feature extraction technique by optimizing the block size to extract image micropatterns and computing center of mass (CoM) for each pixel to extract feature vectors. The performance of the proposed framework is evaluated using a CMTHis dataset comprising histopathological images of canine mammary tumor (CMT), a prevalent neoplastic disease in female dogs, and an established model for human breast cancer. Data analysis reveals that stain normalization and magnification influence the performance of the CoMHisP framework, with the best results achieved at lower magnifications after stain normalization. The proposed framework achieves a classification accuracy of 97.25% ( $pm$ 1.80%) using a FSVM-WD classifier, outperforming both traditional ML and deep FE-VGGNET16-based feature descriptors. To the best of our knowledge, this is the first time a CoM-based feature descriptor has been proposed for histopathological image analysis of CMTs and its performance was evaluated using a fuzzy SVM-based classifier. The proposed method performs well with datasets of limited size and low-magnification images and, therefore, has the potential to provide rapid and accurate diagnosis in low-cost clinical settings.
机译:机器学习(ML)已成为模式识别的强大工具。传统的ML算法具有有限的能力揭示癌症组织病理学图像最复杂的特征,但是通过使用模糊建模可以增强它们的鲁棒性和容错能力,以捕获图像数据中的不确定性。因此,本文提出了一种基于模糊支持向量机的新型COMHISP框架,其级别密度信息(FSVM-WD)。它通过优化块大小来利用新颖的特征提取技术以提取每个像素提取每个像素的图像微图案和计算中心(COM)以提取特征向量。使用包含犬乳腺肿瘤(CMT)组织病理学图像,雌性狗的普遍肿瘤疾病的CMthis DataSet评估所提出的框架的性能,以及人类乳腺癌的既定模型。数据分析表明,污染归一化和放大率影响了Comhisp框架的性能,在染色标准化后在较低的放大率下实现了最佳结果。所提出的框架实现了97.25%的分类准确性(<内联 - 公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org / 1999 / xlink“> $ PM $ 1.80%)使用FSVM-WD分类器,优于传统的ML和Deep Fe-基于VGGNET16的功能描述符。据我们所知,这是第一次提出了COM的特征描述符,以便使用基于模糊的SVM的分类器来评估CMTS的组织病理学图像分析及其性能。所提出的方法利用有限尺寸和低放大图像的数据集进行良好,因此,有可能在低成本临床环境中提供快速准确的诊断。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2021年第1期|103-117|共15页
  • 作者单位

    Department of Computer Science and Engineering Indian Institute of Technology BHU Varanasi India;

    Department of Computer Science and Engineering Indian Institute of Technology BHU Varanasi India;

    Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute Izatnagar Bareilly India;

    Department of Computer Science and Engineering NIT Patna Patna India;

    Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute Izatnagar Bareilly India;

    Department of Computer Science and Engineering Indian Institute of Technology BHU Varanasi India;

    Department of Computer Science and Engineering Thapar Institute of Engineering and Technology (Deemed University) Patiala India;

    Division of Veterinary Biotechnology ICAR-Indian Veterinary Research Institute Izatnagar Bareilly India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature extraction; Tumors; Support vector machines; Image analysis; Breast cancer; Uncertainty;

    机译:特征提取;肿瘤;支持向量机;图像分析;乳腺癌;不确定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号