首页> 外文会议>Pattern recognition and image analysis >Classification of Ultrasound Medical Images Using Distance Based Feature Selection and Fuzzy-SVM
【24h】

Classification of Ultrasound Medical Images Using Distance Based Feature Selection and Fuzzy-SVM

机译:基于距离特征选择和模糊支持向量机的超声医学图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method of classifying ultrasound medical images towards dealing with two important aspects: (i) optimal feature subset selection for representing ultrasound medical images and (ii) improvement of classification accuracy by avoiding outliers. An objective function combining the concept of between-class distance and within-class divergence among the training dataset has been proposed as the evaluation criteria of feature selection. Searching for the optimal subset of features has been performed using Multi-Objective Genetic Algorithm (MOGA). Applying the proposed criteria, a subset of Grey Level Co-occurrence Matrix (GLCM) and Grey Level Run Length Matrix (GLRLM) based statistical texture descriptors have been identified that maximizes separability among the classes of the training dataset. To avoid the impact of noisy data during classification, Fuzzy Support Vector Machine (FSVM) has been adopted that reduces the effects of outliers by taking into account the level of significance of each training sample. The proposed approach of ultrasound medical image classification has been tested using a database of 679 ultrasound ovarian images and 89.60% average classification accuracy has been achieved.
机译:本文针对两个重要方面提出了一种对超声医学图像进行分类的方法:(i)代表超声医学图像的最佳特征子集选择;(ii)通过避免离群值来提高分类精度。提出了一种将训练数据集之间的类间距离和类内差异的概念相结合的目标函数作为特征选择的评价标准。已经使用多目标遗传算法(MOGA)进行了特征的最佳子集搜索。应用提出的标准,已经确定了基于灰度共生矩阵(GLCM)和基于灰度游程长度矩阵(GLRLM)的统计纹理描述符的子集,该子集可以最大化训练数据集各类之间的可分离性。为了避免分类期间嘈杂数据的影响,已采用模糊支持向量机(FSVM),通过考虑每个训练样本的显着性水平来减少离群值的影响。超声医学图像分类的建议方法已使用679个超声卵巢图像数据库进行了测试,平均分类精度达到89.60%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号