首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring
【24h】

A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring

机译:一种启发式神经网络结构,依赖于模糊逻辑进行图像评分

获取原文
获取原文并翻译 | 示例

摘要

Traditional deep learning methods are suboptimal in classifying ambiguity features, which often arise in noisy and hard to predict categories, especially, to distinguish semantic scoring. Semantic scoring, depending on semantic logic to implement evaluation, inevitably contains fuzzy description and misses some concepts, for example, the ambiguous relationship between normal and probably normal always presents unclear boundaries (normal—more likely normal—probably normal). Thus, human error is common when annotating images. Differing from existing methods that focus on modifying kernel structure of neural networks, this article proposes a dominant fuzzy fully connected layer (FFCL) for breast imaging reporting and data system (BI-RADS) scoring and validates the universality of this proposed structure. This proposed model aims to develop complementary properties of scoring for semantic paradigms, while constructing fuzzy rules based on analyzing human thought patterns, and to particularly reduce the influence of semantic conglutination. Specifically, this semantic-sensitive defuzzifier layer projects features occupied by relative categories into semantic space, and a fuzzy decoder modifies probabilities of the last output layer referring to the global trend. Moreover, the ambiguous semantic space between two relative categories shrinks during the learning phases, as the positive and negative growth trends of one category appearing among its relatives were considered. We first used the Euclidean distance to zoom in the distance between the real scores and the predicted scores, and then employed two sample t test method to evidence the advantage of the FFCL architecture. Extensive experimental results performed on the curated breast imaging subset of digital database of screening mammography dataset show that our FFCL structure can achieve superior performances for both triple and multiclass classification in BI-RADS scoring, outperforming the state-of-the-art methods.
机译:传统的深度学习方法在分类模糊功能方面是次优,这常常在嘈杂和难以预测类别中,特别是区分语义评分。语义评分,取决于语义逻辑实现评估,不可避免地包含模糊描述和错过一些概念,例如,正常和可能正常之间的模糊关系总是呈现不明确的界限(正常 - 更可能正常的正常正常)。因此,在注释图像时,人为错误是常见的。本文专注于修改神经网络的内核结构的现有方法不同,本文提出了用于乳房成像报告和数据系统(BI-RAD)评分的主导模糊完全连接的层(FFCL),并验证该建议结构的普遍性。该拟议的模型旨在为语义范例开发评分的互补特性,同时构建基于分析人类思维模式的模糊规则,以及特别降低语义凝集的影响。具体而言,这种语义敏感的除霜层将由相对类别占用的语义空间占用的功能,以及模糊解码器改变了引用全球趋势的最后输出层的概率。此外,两个相对类别之间的模糊语义空间在学习阶段缩小,因为考虑了其亲属之间出现的一个类别的正负增长趋势。我们首先使用欧几里德距离来放大真实分数与预测分数之间的距离,然后使用两个样本<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns: xlink =“http://www.w3.org/1999/xlink”> t 测试方法证明FFCL架构的优势。对筛选乳房X线摄影数据集的数字数据库的策划乳房成像子集进行了广泛的实验结果表明,我们的FFCL结构可以实现BI-RADS评分中的三重和多标量分类的优越性,优于最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号