首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Removing Redundancy Restricted Boltzmann Machine: Improving Learning Speed and Classification Accuracy
【24h】

Fuzzy Removing Redundancy Restricted Boltzmann Machine: Improving Learning Speed and Classification Accuracy

机译:模糊拆除冗余限制Boltzmann机器:提高学习速度和分类准确性

获取原文
获取原文并翻译 | 示例

摘要

To improve the feature extraction ability and shorten the learning time, fuzzy removing redundancy restricted Boltzmann machine (F3RBM) is developed. The features extracted by F3RBM with unsupervised learning are imported into support vector machine (SVM) to establish F3RBM-SVM model, which achieves fast and high-precision automatic classification of different samples. To expand the feature extraction capability of restricted Boltzmann machine (RBM), the deterministic parameters of control model are replaced by fuzzy numbers in view of the superiority of fuzzy idea and the redundancy removal mechanism is introduced. Comparing the feature similarity of hidden units with the threshold value, if the similarity is greater than the threshold value, they are considered to be redundant units with the same features. The redundant units are removed to achieve further dimension reduction. Finally, the learning speed, feature extraction ability, and classification accuracy of different models are compared in MINIST handwritten dataset, Fashion MNIST dataset, and Olivetti Face dataset. The experimental results show that the feature extraction capability of FRBM and F3RBM is better than that of RBM. When there are a large number of hidden units, the learning speed of F3RBM is obviously faster than that of FRBM. The features extracted from F3RBM are imported into the SVM to build F3RBM-SVM model, which improves the classification accuracy and learning speed than general classifier. When adding other noises, F3RBM-SVM has better robustness than other models.
机译:为了提高特征提取能力并缩短学习时间,开发了模糊拆除冗余限制博尔兹曼机(F3RBM)。 F3RBM提取的功能与无监督学习的功能进口到支持向量机(SVM)中以建立F3RBM-SVM模型,实现不同样品的快速和高精度的自动分类。为了扩展受限制的Boltzmann机器(RBM)的特征提取能力,考虑到模糊思想的优越性,通过模糊数取代了控制模型的确定性参数,介绍了冗余去除机制。将隐藏单元的特征相似性与阈值进行比较,如果相似性大于阈值,则它们被认为是具有相同特征的冗余单元。除去冗余单元以实现进一步的尺寸减小。最后,在Minist手写数据集,时尚Mnist DataSet和Olivetti Face数据集中比较了不同模型的学习速度,特征提取能力和分类准确性。实验结果表明,FRBM和F3RBM的特征提取能力优于RBM。当有大量隐藏单元时,F3RBM的学习速度显然比FRBM的学习速度快。从F3RBM提取的功能导入到SVM中以构建F3RBM-SVM模型,这提高了比一般分类器的分类精度和学习速度。添加其他噪声时,F3RBM-SVM具有比其他模型更好的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号