首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Clustering-Based Adaptive Regression for Drifting Data Streams
【24h】

Fuzzy Clustering-Based Adaptive Regression for Drifting Data Streams

机译:基于模糊的基于聚类的漂移数据流的自适应回归

获取原文
获取原文并翻译 | 示例

摘要

Current models and algorithms have been increasingly required to learn in a nonstationary environment because the phenomenon of concept drift (or pattern shift) may occur, that is, the assumption that data are identically distributed may be invalid in data streams. Once the data pattern changes, a well-trained model built on the previous, now obsolete data cannot provide an accurate prediction for future data. To obtain reliable prediction, it is important to understand the existing patterns in the data stream and to know which pattern the current examples belong to during the modeling process. However, it is ambiguous to classify an example to a certain pattern in many real-world cases. In this paper, we propose a novel adaptive regression approach, called FUZZ-CARE, to dynamically recognize, train, and store patterns, and assign the membership degree of the upcoming examples belonging to these patterns. Membership degrees are presented by the membership matrix obtained from a kernel fuzzy c-means clustering, which is synchronously trained and adapted with regression parameters. Rather than designing a complicated procedure to continuously chase the newest pattern, which is a common approach in the literature, FUZZ-CARE abstracts useful past information to help predict newly arrived examples. It thus effectively avoids the risk of insufficient training due to the lack of new data and improves prediction accuracy. Experiments on six synthetic datasets and 21 real-world datasets validate the high accuracy and robustness of our approach.
机译:目前的模型和算法越来越需要在非营养环境中学习,因为可能发生概念漂移(或模式移位)的现象,即数据相同分布的假设在数据流中可以无效。一旦数据模式发生变化,在前一个训练有素的模型,现在已经过时的数据无法为未来数据提供准确的预测。为了获得可靠的预测,重要的是要理解数据流中的现有模式,并知道当前示例在建模过程中属于哪个模式。但是,在许多真实案例中对某种模式进行分类是模糊的。在本文中,我们提出了一种新颖的自适应回归方法,称为模糊护理,动态识别,列车和存储模式,并分配属于这些模式的即将到来的示例的成员资格程度。成员资格学位由从内核模糊C-means集群获得的隶属矩阵呈现,该矩阵是同步培训并适用于回归参数。而不是设计一个复杂的程序来持续追逐更新的模式,这是文献中的常见方法,模糊护理摘要有用过去的信息,帮助预测新来到的示例。因此,由于缺乏新数据并提高预测准确性,因此有效地避免了培训不足的风险。六个合成数据集和21个现实世界数据集的实验验证了我们方法的高精度和鲁棒性。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2020年第3期|544-557|共14页
  • 作者单位

    Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Decis Syst & E Serv Intelligence Lab Ultimo NSW 2007 Australia;

    Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Decis Syst & E Serv Intelligence Lab Ultimo NSW 2007 Australia;

    Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Decis Syst & E Serv Intelligence Lab Ultimo NSW 2007 Australia;

    Univ Technol Sydney Fac Engn & Informat Technol Ctr Artificial Intelligence Decis Syst & E Serv Intelligence Lab Ultimo NSW 2007 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    c-Means; concept drift; data stream; fuzzy clustering; regression;

    机译:C-meance;概念漂移;数据流;模糊聚类;回归;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号