首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Fixed-Time Learning Control With Saturated Input, Nonlinear Switching Surface, and Switching Gain to Achieve Null Tracking Error
【24h】

Fuzzy Fixed-Time Learning Control With Saturated Input, Nonlinear Switching Surface, and Switching Gain to Achieve Null Tracking Error

机译:具有饱和输入,非线性切换表面和切换增益的模糊定时学习控制,实现空跟踪误差

获取原文
获取原文并翻译 | 示例

摘要

A class of generalized nonlinear dynamic systems is first approximated by N fuzzy-based linear subsystems using the identification of input-output data or the linearizing system with respect to suitable operating points. To obtain null trajectory tracking error in fixed time, a fuzzy fixed-time control (FFTC) with nonlinear switching surface and switching gain is first designed. It can he said that the FYTC is based on a class of passive and distributive models with uncertainties. To compensate enormous uncertainties, a fuzzy fixed-time learning control (FFTLC) by learning two unknown coefficients for the upper bound of uncertainties in each subsystem is designed. As compared with radial basis function neural network, the computational complexity for the compensated uncertainties is much simple. It can be said that an FFTLC is based on a class of online active and distributive uncertain models. Due to the fixed-time control design, the transients often occur, particularly for the larger uncertainties or initial tracking error. Hence, the saturated input of nonlinear dynamic system is addressed and online compensated. Finally, the compared simulations and application to two-link robot manipulator confirm the effectiveness, robustness, and less computation as compared with previous studies.
机译:一类广义非线性动态系统首先由基于N模糊的线性子系统近似,使用输入输出数据或线性化系统相对于合适的操作点来近似。为了在固定时间内获得空轨迹跟踪误差,首先设计具有非线性开关表面和开关增益的模糊定时控制(FFTC)。他可以说,FYTC基于一类具有不确定性的被动和分配模型。为了补偿巨大的不确定性,设计了一种模糊的定时学习控制(FFTLC),通过学习两个未知系数的每个子系统中的不确定性的上限。与径向基函数神经网络相比,补偿不确定性的计算复杂性很简单。可以说,FFTLC基于一类在线主动和分配不确定模型。由于定时控制设计,通常发生瞬态,特别是对于较大的不确定性或初始跟踪误差。因此,解决了非线性动态系统的饱和输入和在线补偿。最后,与前一项研究相比,对两连杆机器人操纵器的仿真和应用于双链路机器人机械手的效果,鲁棒性和计算较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号