首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction
【24h】

Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction

机译:经由分布式平行化对股票预测的模糊粗糙神经网络的多标注演化

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy rough theory can describe real-world situations in a mathematically effective and interpretable way, while evolutionary neural networks can be utilized to solve complex problems. Combining them with these complementary capabilities may lead to evolutionary fuzzy rough neural network with the interpretability and prediction capability. In this article, we propose modifications to the existing models of fuzzy rough neural network and then develop a powerful evolutionary framework for fuzzy rough neural networks by inheriting the merits of both the aforementioned systems. We first introduce rough neurons and enhance the consequence nodes, and further integrate the interval type-2 fuzzy set into the existing fuzzy rough neural network model. Thus, several modified fuzzy rough neural network models are proposed. While simultaneously considering the objectives of prediction precision and network simplicity, each model is transformed into a multiobjective optimization problem by encoding the structure, membership functions, and the parameters of the network. To solve these optimization problems, distributed parallel multiobjective evolutionary algorithms are proposed. We enhance the optimization processes with several measures including optimizer replacement and parameter adaption. In the distributed parallel environment, the tedious and time-consuming neural network optimization can be alleviated by numerous computational resources, significantly reducing the computational time. Through experimental verification on complex stock time series prediction tasks, the proposed optimization algorithms and the modified fuzzy rough neural network models exhibit significant improvements the existing fuzzy rough neural network and the long short-term memory network.
机译:模糊粗略理论可以以数学上有效和可解释的方式描述现实世界情况,而进化神经网络可用于解决复杂的问题。将它们与这些互补功能相结合可能导致进化模糊粗糙神经网络,具有可解释性和预测能力。在本文中,我们向现有模糊粗糙神经网络模型提出修改,然后通过继承上述系统的优点来开发模糊粗糙神经网络的强大进化框架。我们首先引入粗糙的神经元并增强后果节点,并进一步将间隔类型-2模糊集集成到现有的模糊粗糙神经网络模型中。因此,提出了几种改进的模糊粗糙神经网络模型。同时考虑预测精度和网络简单的目标,通过编码结构,隶属函数和网络的参数,将每个模型转换为多目标优化问题。为了解决这些优化问题,提出了分布式并行多目标进化算法。我们增强了具有多种措施的优化流程,包括优化器更换和参数适应。在分布式并行环境中,繁琐且耗时的神经网络优化可以通过许多计算资源来缓解,显着降低计算时间。通过对复杂库存时间序列预测任务的实验验证,所提出的优化算法和改进的模糊粗糙神经网络模型表现出现有的模糊粗糙神经网络和长短期内存网络的显着改进。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2020年第5期|939-952|共14页
  • 作者单位

    Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin 300130 Peoples R China|Hebei Univ Technol Sch Artificial Intelligence Tianjin 300401 Peoples R China;

    Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin 300130 Peoples R China|Hebei Univ Technol Sch Artificial Intelligence Tianjin 300401 Peoples R China;

    Qingdao Univ Sch Data Sci & Software Engn Qingdao 266071 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn Beijing 100029 Peoples R China|Goethe Univ Frankfurt Dept Chem D-60323 Frankfurt Germany;

    Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin 300130 Peoples R China|Hebei Univ Technol Sch Artificial Intelligence Tianjin 300401 Peoples R China;

    Hebei Univ Technol Sch Elect & Informat Engn Tianjin 300401 Peoples R China|Univ Melbourne Sch Elect Mech & Infrastruct Engn Parkville Vic 3010 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distributed parallelism; evolutionary neural network; fuzzy rough neural network (FRNN); multiobjective evolution; stock price prediction;

    机译:分布式并行性;进化神经网络;模糊粗糙神经网络(FRNN);多目标进化;股票价格预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号