首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Hopping Umbrella for Fuzzy Joining Data Streams From IoT Devices in the Cloud and on the Edge
【24h】

A Hopping Umbrella for Fuzzy Joining Data Streams From IoT Devices in the Cloud and on the Edge

机译:用于模糊的跳伞伞,用于从云中的IOT设备和边缘的IOT设备中的数据流

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) is a new technology that changes the image of the current world, yielding new possibilities, but also proliferating data. IoT devices may constantly produce enormous amounts of data as data streams that can be analyzed in real time and also collected for further exploration in data lakes in huge data centers. Due to their scaling capabilities, these data centers are frequently located in the Cloud. However, recent rapid growth in the number of IoT devices and their applications in manufacturing, transport, and health care motivates moving the burden of data processing and analysis to the Edge. One of the phases of data processing is combining data streams from two (or more) IoT devices that monitor the same object and work asynchronously. Since they generate sensor readings at various moments of time, their data streams must be properly combined in order to obtain a complete image of the monitored object or process. In this article, we present the idea of a hopping umbrella which fuzzifies timestamps from sensor readings while joining data streams from asynchronous IoT devices in a flexible way. In contrast to processing data at rest, the hopping umbrella implements the fuzzy join operation in time windows for data streams (data in motion). By using fuzzy sets, the hopping umbrella not only allows combining asynchronous events from multiple sensors, but also facilitates evaluation of the degree of matching of the combined sensor readings, and consequently allows for reduction of the output stream size. Our experiments performed in Cloud and on Edge devices proved that with the use of this idea, we are able to properly join the best matching sensor readings and in some scenarios, reduce the number of data transferred to the Cloud data center without significant overhead in resource utilization of stream processing units.
机译:事物互联网(物联网)是一种改变当前世界的形象的新技术,产生新的可能性,但也是增殖数据。物联网设备可能不断产生巨大数量的数据作为可以实时分析的数据流,并在巨大数据中心中的数据湖泊中进行进一步探索。由于其缩放功能,这些数据中心经常位于云中。然而,最近在制造,运输和医疗保健中的物联网设备数量及其应用中的迅速增长激励了将数据处理和分析的负担移动到边缘。数据处理的阶段之一是将数据流与监视相同对象的两个(或更多个)的设备组合并异步地工作。由于它们在各种时刻生成传感器读数,因此必须适当地组合其数据流以便获得受监视对象或过程的完整图像。在本文中,我们介绍了一种跳跃伞的想法,它模糊了传感器读数的时间戳,同时从异步物联网设备以灵活的方式加入数据流。与静止处理数据相比,跳伞伞在时间窗口中实现了用于数据流的模糊连接操作(运动中的数据)。通过使用模糊套,跳跃伞不仅允许组合来自多个传感器的异步事件,而且还有助于评估组合传感器读数的匹配程度,因此允许降低输出流大小。我们的实验在云和边缘设备中执行证明,随着使用此想法,我们能够正确加入最佳匹配的传感器读数和某些情况,将数据传输到云数据中心的数据数量,而无需资源显着开销。流处理单元的利用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号