首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Optimal Energy Management for Fuel Cell and Supercapacitor Systems Using Neural Network Based Driving Pattern Recognition
【24h】

Fuzzy Optimal Energy Management for Fuel Cell and Supercapacitor Systems Using Neural Network Based Driving Pattern Recognition

机译:基于神经网络的驾驶模式识别的燃料电池和超级电容器系统模糊最优能量管理

获取原文
获取原文并翻译 | 示例

摘要

A novel adaptive energy management strategy is proposed for real-time power split between fuel cells (FCs) and supercapacitors (SCs) in a hybrid electric vehicle in view of the fact that driving patterns greatly affect fuel economy. The driving pattern recognition (DPR) is achieved based on the features extracted from the historical velocity window with a multilayer perceptron neural network. After the DPR has been obtained, an adaptive fuzzy energy management controller is utilized for power split according to the required power for vehicle running. In order to prolong the FC lifetime while decreasing the hydrogen consumption, a genetic algorithm is applied to optimize critical factors such as adaptive gains and fuzzy membership function parameters for several standard driving cycles. In the proposed method, the future driving cycles are not required and the current driving pattern can be successfully recognized, demonstrating that less current fluctuations and fuel consumption can be achieved under various driving conditions. Compared with conventional energy management systems, the proposed framework can ensure the state of charge of SCs within the desired limit.
机译:鉴于驾驶模式极大地影响燃油经济性,提出了一种新颖的自适应能量管理策略,用于混合动力电动汽车中的燃料电池(FC)和超级电容器(SC)之间的实时功率分配。驾驶模式识别(DPR)是基于使用多层感知器神经网络从历史速度窗口提取的特征实现的。获得DPR后,根据车辆行驶所需的功率,使用自适应模糊能量管理控制器进行功率分配。为了延长FC寿命,同时减少氢气消耗,应用遗传算法针对几个标准驾驶周期优化关键因素,例如自适应增益和模糊隶属函数参数。在提出的方法中,不需要未来的驾驶周期,并且可以成功识别当前的驾驶模式,这表明在各种驾驶条件下可以实现较小的电流波动和燃料消耗。与传统的能源管理系统相比,提出的框架可以确保SC的充电状态在所需的限制之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号