首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Transfer Learning Using an Infinite Gaussian Mixture Model and Active Learning
【24h】

Fuzzy Transfer Learning Using an Infinite Gaussian Mixture Model and Active Learning

机译:使用无限高斯混合模型的模糊转移学习和主动学习

获取原文
获取原文并翻译 | 示例

摘要

Transfer learning is gaining considerable attention due to its ability to leverage previously acquired knowledge to assist in completing a prediction task in a related domain. Fuzzy transfer learning, which is based on fuzzy system (especially fuzzy rule-based models), has been developed because of its capability to deal with the uncertainty in transfer learning. However, two issues with fuzzy transfer learning have not yet been resolved: choosing an appropriate source domain and efficiently selecting labeled data for the target domain. This paper proposes an innovative method based on fuzzy rules that combines an infinite Gaussian mixture model (IGMM) with active learning to enhance the performance and generalizability of the constructed model. An IGMM is used to identify the data structures in the source and target domains providing a promising solution to the domain selection dilemma. Further, we exploit the interactive query strategy in active learning to correct imbalances in the knowledge to improve the generalizability of fuzzy learning models. Through experiments on synthetic datasets, we demonstrate the rationality of employing an IGMM and the effectiveness of applying an active learning technique. Additional experiments on real-world datasets further support the capabilities of the proposed method in practical situations.
机译:转移学习由于能够利用先前获得的知识来协助完成相关领域的预测任务而受到了广泛的关注。已经开发了基于模糊系统(特别是基于模糊规则的模型)的模糊转移学习,因为它具有处理转移学习中不确定性的能力。但是,模糊转移学习的两个问题尚未解决:选择合适的源域和有效选择目标域的标记数据。本文提出了一种基于模糊规则的创新方法,该方法将无限高斯混合模型(IGMM)与主动学习相结合,以增强所构建模型的性能和通用性。 IGMM用于标识源域和目标域中的数据结构,从而为解决域选择难题提供了有希望的解决方案。此外,我们在主动学习中利用交互式查询策略来纠正知识的不平衡,以提高模糊学习模型的可推广性。通过合成数据集上的实验,我们证明了采用IGMM的合理性以及采用主动学习技术的有效性。在实际数据集上的其他实验进一步支持了在实际情况下该方法的功能。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2019年第2期|291-303|共13页
  • 作者单位

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Decis Syst & E Serv Intelligence Lab, Sydney, NSW 2007, Australia;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Decis Syst & E Serv Intelligence Lab, Sydney, NSW 2007, Australia;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Decis Syst & E Serv Intelligence Lab, Sydney, NSW 2007, Australia;

    Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Decis Syst & E Serv Intelligence Lab, Sydney, NSW 2007, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Domain adaptation; fuzzy rules; machine learning; regression; transfer learning;

    机译:领域适应;模糊规则;机器学习;回归;转移学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号