首页> 外文期刊>IEEE transactions on evolutionary computation >Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
【24h】

Comprehensive learning particle swarm optimizer for global optimization of multimodal functions

机译:用于多峰函数全局优化的综合学习粒子群优化器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a variant of particle swarm optimizers (PSOs) that we call the comprehensive learning particle swarm optimizer (CLPSO), which uses a novel learning strategy whereby all other particles' historical best information is used to update a particle's velocity. This strategy enables the diversity of the swarm to be preserved to discourage premature convergence. Experiments were conducted (using codes available from http://www.ntu.edu.sg/home/epnsugan) on multimodal test functions such as Rosenbrock, Griewank, Rastrigin, Ackley, and Schwefel and composition functions both with and without coordinate rotation. The results demonstrate good performance of the CLPSO in solving multimodal problems when compared with eight other recent variants of the PSO.
机译:本文介绍了粒子群优化器(PSO)的一种变体,我们称其为综合学习粒子群优化器(CLPSO),它使用一种新颖的学习策略,可以利用所有其他粒子的历史最佳信息来更新粒子的速度。这种策略可以保留群的多样性,以防止过早收敛。进行了实验(使用可从http://www.ntu.edu.sg/home/epnsugan获得的代码)对多模式测试功能(例如Rosenbrock,Griewank,Rastrigin,Ackley和Schwefel)以及带有和不带有坐标旋转的合成功能进行了实验。与PSO的其他八个最新变体相比,结果证明了CLPSO在解决多峰问题方面的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号