首页> 外文期刊>IEEE transactions on evolutionary computation >An Evolutionary Algorithm Approach to Optimal Ensemble Classifiers for DNA Microarray Data Analysis
【24h】

An Evolutionary Algorithm Approach to Optimal Ensemble Classifiers for DNA Microarray Data Analysis

机译:DNA芯片数据分析中最优集合分类器的进化算法方法

获取原文
获取原文并翻译 | 示例

摘要

In general, the analysis of microarray data requires two steps: feature selection and classification. From a variety of feature selection methods and classifiers, it is difficult to find optimal ensembles composed of any feature-classifier pairs. This paper proposes a novel method based on the evolutionary algorithm (EA) to form sophisticated ensembles of features and classifiers that can be used to obtain high classification performance. In spite of the exponential number of possible ensembles of individual feature-classifier pairs, an EA can produce the best ensemble in a reasonable amount of time. The chromosome is encoded with real values to decide the weight for each feature-classifier pair in an ensemble. Experimental results with two well-known microarray datasets in terms of time and classification rate indicate that the proposed method produces ensembles that are superior to individual classifiers, as well as other ensembles optimized by random and greedy strategies.
机译:通常,对微阵列数据的分析需要两个步骤:特征选择和分类。从各种特征选择方法和分类器中,很难找到由任何特征分类器对组成的最优集合。本文提出了一种基于进化算法(EA)的新颖方法,以形成复杂的特征和分类器集合,可用于获得较高的分类性能。尽管单个特征分类器对的可能合奏数量呈指数级增长,但EA可以在合理的时间内产生最佳的合奏。染色体以实数值编码,以决定集合中每个特征分类器对的权重。在时间和分类率方面,两个著名的微阵列数据集的实验结果表明,所提出的方法产生的集合优于单个分类器,并且通过随机和贪婪策略优化了其他集合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号