首页> 外文期刊>IEEE transactions on evolutionary computation >On the Scalability of Real-Coded Bayesian Optimization Algorithm
【24h】

On the Scalability of Real-Coded Bayesian Optimization Algorithm

机译:实编码贝叶斯优化算法的可扩展性

获取原文
获取原文并翻译 | 示例

摘要

Estimation of distribution algorithms (EDAs) are major tools in evolutionary optimization. They have the ability to uncover the hidden regularities of problems and then exploit them for effective search. Real-coded Bayesian optimization algorithm (rBOA) which brings the power of discrete BOA to bear upon the continuous domain has been regarded as a milestone in the field of numerical optimization. It has been empirically observed that the rBOA solves, with subquadratic scaleup behavior, numerical optimization problems of bounded difficulty. This underlines the scalability of rBOA (at least) in practice. However, there is no firm theoretical basis for this scalability.
机译:分布算法(EDA)的估计是进化优化中的主要工具。他们有能力发现问题的隐藏规律,然后利用它们进行有效搜索。实数编码贝叶斯优化算法(rBOA)将离散BOA的功能带到连续域上,被认为是数值优化领域的一个里程碑。经验地观察到,rBOA通过二次放大行为解决了有限难度的数值优化问题。这强调了至少在实践中rBOA的可扩展性。但是,这种可伸缩性没有坚实的理论基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号