首页> 外文期刊>Genetic programming and evolvable machines >A new real-coded Bayesian optimization algorithm based on a team of learning automata for continuous optimization
【24h】

A new real-coded Bayesian optimization algorithm based on a team of learning automata for continuous optimization

机译:基于学习自动机团队的连续编码新实数贝叶斯优化算法

获取原文
获取原文并翻译 | 示例

摘要

Estimation of distribution algorithms have evolved as a technique for estimating population distribution in evolutionary algorithms. They estimate the distribution of the candidate solutions and then sample the next generation from the estimated distribution. Bayesian optimization algorithm is an estimation of distribution algorithm, which uses a Bayesian network to estimate the distribution of candidate solutions and then generates the next generation by sampling from the constructed network. The experimental results show that the Bayesian optimization algorithms are capable of identifying correct linkage between the variables of optimization problems. Since the problem of finding the optimal Bayesian network belongs to the class of NP-hard problems, typically Bayesian optimization algorithms use greedy algorithms to build the Bayesian network. This paper proposes a new real-coded Bayesian optimization algorithm for solving continuous optimization problems that uses a team of learning automata to build the Bayesian network. This team of learning automata tries to learn the optimal Bayesian network structure during the execution of the algorithm. The use of learning automaton leads to an algorithm with lower computation time for building the Bayesian network. The experimental results reported here show the preference of the proposed algorithm on both uni-modal and multi-modal optimization problems.
机译:分布算法的估计已发展为一种在进化算法中估计种群分布的技术。他们估计候选解决方案的分布,然后从估计的分布中采样下一代。贝叶斯优化算法是分布算法的一种估计,它使用贝叶斯网络来估计候选解的分布,然后通过从构造的网络中进行采样来生成下一代。实验结果表明,贝叶斯优化算法能够识别优化问题变量之间的正确联系。由于找到最佳贝叶斯网络的问题属于NP难题,因此通常贝叶斯优化算法使用贪婪算法来构建贝叶斯网络。本文提出了一种新的实数编码贝叶斯优化算法,用于解决连续优化问题,该算法使用一组学习自动机来构建贝叶斯网络。这个学习自动机的团队尝试在算法执行期间学习最佳贝叶斯网络结构。学习自动机的使用导致用于构建贝叶斯网络的算法具有较低的计算时间。此处报告的实验结果表明,该算法在单峰和多峰优化问题上均具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号