首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Hybrid Genetic Algorithm Using a Forward Encoding Scheme for Lifetime Maximization of Wireless Sensor Networks
【24h】

Hybrid Genetic Algorithm Using a Forward Encoding Scheme for Lifetime Maximization of Wireless Sensor Networks

机译:使用前向编码方案的混合遗传算法可最大化无线传感器网络的使用寿命

获取原文
获取原文并翻译 | 示例

摘要

Maximizing the lifetime of a sensor network by scheduling operations of sensors is an effective way to construct energy efficient wireless sensor networks. After the random deployment of sensors in the target area, the problem of finding the largest number of disjoint sets of sensors, with every set being able to completely cover the target area, is nondeterministic polynomial-complete. This paper proposes a hybrid approach of combining a genetic algorithm with schedule transition operations, termed STHGA, to address this problem. Different from other methods in the literature, STHGA adopts a forward encoding scheme for chromosomes in the population and uses some effective genetic and sensor schedule transition operations. The novelty of the forward encoding scheme is that the maximum gene value of each chromosome is increased consistently with the solution quality, which relates to the number of disjoint complete cover sets. By exerting the restriction on chromosomes, the forward encoding scheme reflects the structural features of feasible schedules of sensors and provides guidance for further advancement. Complying with the encoding requirements, genetic operations and schedule transition operations in STHGA cooperate to change the incomplete cover set into a complete one, while the other sets still maintain complete coverage through the schedule of redundant sensors in the sets. Applications for sensing a number of target points, termed point-coverage, and for the whole area, termed area-coverage, have been used for evaluating the effectiveness of STHGA. Besides the number of sensors and sensors' sensing ranges, the influence of sensors' redundancy on the performance of STHGA has also been analyzed. Results show that the proposed algorithm is promising and outperforms the other existing approaches by both optimization speed and solution quality.
机译:通过调度传感器的操作来最大化传感器网络的寿命是构建节能无线传感器网络的有效方法。在目标区域中随机部署传感器之后,找到最大数量不相交的传感器集(每个传感器集能够完全覆盖目标区域)的问题是不确定的多项式完成的。本文提出了一种混合方法,将遗传算法与计划转换操作(称为STHGA)相结合,以解决此问题。与文献中的其他方法不同,STHGA对种群中的染色体采用了正向编码方案,并使用了一些有效的遗传和传感器调度过渡操作。前向编码方案的新颖之处在于,每个染色体的最大基因值与解决方案质量一致地增加,这与不完整的完全覆盖集的数量有关。通过对染色体施加限制,前向编码方案反映了传感器可行时间表的结构特征,并为进一步发展提供了指导。根据编码要求,STHGA中的遗传操作和时间表转换操作可以将不完全覆盖集更改为一个完整的覆盖集,而其他集仍通过该集内冗余传感器的时间表保持完整的覆盖范围。用于感测多个目标点(称为点覆盖)以及整个区域(称为区域覆盖)的应用程序已用于评估STHGA的有效性。除了传感器的数量和传感器的感应范围外,还分析了传感器冗余对STHGA性能的影响。结果表明,该算法在优化速度和解决方案质量上均具有良好的前景,并且优于其他现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号