首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation
【24h】

A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation

机译:定义多目标进化算法的区域和偏好合并

获取原文
获取原文并翻译 | 示例

摘要

We have developed a steady-state elitist evolutionary algorithm to approximate the Pareto-optimal frontiers of multiobjective decision making problems. The algorithms define a territory around each individual to prevent crowding in any region. This maintains diversity while facilitating the fast execution of the algorithm. We conducted extensive experiments on a variety of test problems and demonstrated that our algorithm performs well against the leading multiobjective evolutionary algorithms. We also developed a mechanism to incorporate preference information in order to focus on the regions that are appealing to the decision maker. Our experiments show that the algorithm approximates the Pareto-optimal solutions in the desired region very well when we incorporate the preference information.
机译:我们已经开发了稳态精英进化算法,以近似多目标决策问题的帕累托最优边界。该算法在每个人周围定义一个区域,以防止在任何区域拥挤。这在保持多样性的同时促进了算法的快速执行。我们对各种测试问题进行了广泛的实验,并证明了我们的算法与领先的多目标进化算法相比性能良好。我们还开发了一种合并偏好信息的机制,以便将重点放在吸引决策者的区域上。我们的实验表明,当我们合并偏好信息时,该算法可以很好地逼近所需区域中的帕累托最优解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号