首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Interaction of Culture-Based Learning and Cooperative Co-Evolution and its Application to Automatic Behavior-Based System Design
【24h】

Interaction of Culture-Based Learning and Cooperative Co-Evolution and its Application to Automatic Behavior-Based System Design

机译:基于文化的学习与协作协同进化的相互作用及其在基于行为的自动系统设计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Designing an intelligent situated agent is a difficult task because the designer must see the problem from the agent's viewpoint, considering all its sensors, actuators, and computation systems. In this paper, we introduce a bio-inspired hybridization of reinforcement learning, cooperative co-evolution, and a cultural-inspired memetic algorithm for the automatic development of behavior-based agents. Reinforcement learning is responsible for the individual-level adaptation. Cooperative co-evolution performs at the population level and provides basic decision-making modules for the reinforcement-learning procedure. The culture-based memetic algorithm, which is a new computational interpretation of the meme metaphor, increases the lifetime performance of agents by sharing learning experiences between all agents in the society. In this paper, the design problem is decomposed into two different parts: 1) developing a repertoire of behavior modules and 2) organizing them in the agent's architecture. Our proposed cooperative co-evolutionary approach solves the first problem by evolving behavior modules in their separate genetic pools. We address the problem of relating the fitness of the agent to the fitness of behavior modules by proposing two fitness sharing mechanisms, namely uniform and value-based fitness sharing mechanisms. The organization of behavior modules in the architecture is determined by our structure learning method. A mathematical formulation is provided that shows how to decompose the value of the structure into simpler components. These values are estimated during learning and are used to find the organization of behavior modules during the agent's lifetime. To accelerate the learning process, we introduce a culture-based method based on our new interpretation of the meme metaphor. Our proposed memetic algorithm is a mechanism for sharing learned structures among agents in the society. Lifetime performance of the agent, which is quite im-nportant for real-world applications, increases considerably when the memetic algorithm is in action. Finally, we apply our methods to two benchmark problems: an abstract problem and a decentralized multirobot object-lifting task, and we achieve human-competitive architecture designs.
机译:设计智能的智能座席是一项艰巨的任务,因为设计人员必须考虑到座席的所有传感器,执行器和计算系统,从座席的角度看问题。在本文中,我们介绍了增强学习,协作协同进化和受文化启发的模因算法的生物启发式混合,用于基于行为的代理的自动开发。强化学习负责个人层面的适应。合作式协同进化在总体水平上进行,并为强化学习程序提供了基本的决策模块。基于文化的模因算法是模因隐喻的一种新的计算解释,它通过在社会中所有代理之间共享学习经验来提高代理的终身性能。在本文中,设计问题被分解为两个不同的部分:1)开发行为模块库; 2)在代理的体系结构中组织它们。我们提出的合作共进化方法通过在各自的遗传库中进化行为模块来解决第一个问题。通过提出两种适应度共享机制,即统一和基于价值的适应度共享机制,我们解决了将代理的适应度与行为模块的适应度相关联的问题。架构中行为模块的组织由我们的结构学习方法决定。提供了一个数学公式,该公式说明了如何将结构的值分解为更简单的组件。这些值是在学习过程中估计的,用于查找代理生命周期内行为模块的组织。为了加快学习过程,我们基于对模因隐喻的新解释引入了一种基于文化的方法。我们提出的模因算法是一种在社会中的主体之间共享学习的结构的机制。当执行模因算法时,代理的终生性能(对于实际应用而言非常重要)会大大提高。最后,我们将方法应用于两个基准问题:一个抽象问题和一个分散的多机器人对象提升任务,并实现了具有人类竞争力的体系结构设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号