首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Evolving Team Compositions by Agent Swapping
【24h】

Evolving Team Compositions by Agent Swapping

机译:通过代理交换来发展团队组成

获取原文
获取原文并翻译 | 示例

摘要

Optimizing collective behavior in multiagent systems requires algorithms to find not only appropriate individual behaviors but also a suitable composition of agents within a team. Over the last two decades, evolutionary methods have emerged as a promising approach for the design of agents and their compositions into teams. The choice of a crossover operator that facilitates the evolution of optimal team composition is recognized to be crucial, but so far, it has never been thoroughly quantified. Here, we highlight the limitations of two different crossover operators that exchange entire agents between teams: restricted agent swapping (RAS) that exchanges only corresponding agents between teams and free agent swapping (FAS) that allows an arbitrary exchange of agents. Our results show that RAS suffers from premature convergence, whereas FAS entails insufficient convergence. Consequently, in both cases, the exploration and exploitation aspects of the evolutionary algorithm are not well balanced resulting in the evolution of suboptimal team compositions. To overcome this problem, we propose combining the two methods. Our approach first applies FAS to explore the search space and then RAS to exploit it. This mixed approach is a much more efficient strategy for the evolution of team compositions compared to either strategy on its own. Our results suggest that such a mixed agent-swapping algorithm should always be preferred whenever the optimal composition of individuals in a multiagent system is unknown.
机译:在多主体系统中优化集体行为需要算法不仅找到合适的个人行为,而且要找到团队中合适的组成人员。在过去的二十年中,进化方法已经成为一种有希望的方法,用于将代理及其组成设计成团队。选择能够促进最佳团队组成发展的交叉运营商是至关重要的,但是到目前为止,它尚未得到充分量化。在这里,我们重点介绍了两个在团队之间交换整个代理的交叉运营商的局限性:仅在团队之间交换相应代理的受限代理交换(RAS)和允许任意交换代理的自由代理交换(FAS)。我们的结果表明,RAS会过早收敛,而FAS会导致收敛不足。因此,在这两种情况下,进化算法的探索和开发方面都无法很好地平衡,从而导致团队团队的发展不尽人意。为了克服这个问题,我们建议将两种方法结合起来。我们的方法首先应用FAS来探索搜索空间,然后使用RAS来利用它。与单独使用任何一种策略相比,这种混合方法对于团队组成的演变都是一种更为有效的策略。我们的结果表明,无论何时在多智能体系统中个体的最佳组成未知时,都应该始终首选这种混合智能体交换算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号