首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets
【24h】

Evolutionary Design of Decision-Tree Algorithms Tailored to Microarray Gene Expression Data Sets

机译:针对微阵列基因表达数据集的决策树算法的进化设计

获取原文
获取原文并翻译 | 示例

摘要

Decision-tree induction algorithms are widely used in machine learning applications in which the goal is to extract knowledge from data and present it in a graphically intuitive way. The most successful strategy for inducing decision trees is the greedy top-down recursive approach, which has been continuously improved by researchers over the past 40 years. In this paper, we propose a paradigm shift in the research of decision trees: instead of proposing a new manually designed method for inducing decision trees, we propose automatically designing decision-tree induction algorithms tailored to a specific type of classification data set (or application domain). Following recent breakthroughs in the automatic design of machine learning algorithms, we propose a hyper-heuristic evolutionary algorithm called hyper-heuristic evolutionary algorithm for designing decision-tree algorithms (HEAD-DT) that evolves design components of top-down decision-tree induction algorithms. By the end of the evolution, we expect HEAD-DT to generate a new and possibly better decision-tree algorithm for a given application domain. We perform extensive experiments in 35 real-world microarray gene expression data sets to assess the performance of HEAD-DT, and compare it with very well known decision-tree algorithms such as C4.5, CART, and REPTree. Results show that HEAD-DT is capable of generating algorithms that significantly outperform the baseline manually designed decision-tree algorithms regarding predictive accuracy and F-measure.
机译:决策树归纳算法广泛用于机器学习应用程序,其目标是从数据中提取知识并以图形直观的方式呈现。诱导决策树最成功的策略是贪婪的自上而下的递归方法,研究人员在过去40年中不断对其进行改进。在本文中,我们提出了决策树研究的范式转变:不是提出一种新的手动设计的诱导决策树的方法,而是提出针对特定类型的分类数据集(或应用程序)自动设计的决策树归纳算法域)。继机器学习算法的自动设计方面的最新突破之后,我们提出了一种称为超启发式进化算法的超启发式进化算法,用于设计决策树算法(HEAD-DT),该算法演化了自上而下的决策树归纳算法的设计组件。到发展的最后,我们期望HEAD-DT为给定的应用程序域生成新的并且可能是更好的决策树算法。我们在35个现实世界的微阵列基因表达数据集中进行了广泛的实验,以评估HEAD-DT的性能,并将其与非常著名的决策树算法(例如C4.5,CART和REPTree)进行比较。结果表明,HEAD-DT能够生成明显优于基线人工设计的关于预测准确性和F量度的决策树算法的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号