首页> 外文期刊>IEEE transactions on evolutionary computation >Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization
【24h】

Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization

机译:协同协同进化与差分分组的大规模优化

获取原文
获取原文并翻译 | 示例

摘要

Cooperative co-evolution has been introduced into evolutionary algorithms with the aim of solving increasingly complex optimization problems through a divide-and-conquer paradigm. In theory, the idea of co-adapted subcomponents is desirable for solving large-scale optimization problems. However, in practice, without prior knowledge about the problem, it is not clear how the problem should be decomposed. In this paper, we propose an automatic decomposition strategy called differential grouping that can uncover the underlying interaction structure of the decision variables and form subcomponents such that the interdependence between them is kept to a minimum. We show mathematically how such a decomposition strategy can be derived from a definition of partial separability. The empirical studies show that such near-optimal decomposition can greatly improve the solution quality on large-scale global optimization problems. Finally, we show how such an automated decomposition allows for a better approximation of the contribution of various subcomponents, leading to a more efficient assignment of the computational budget to various subcomponents.
机译:协作协同进化已被引入进化算法中,旨在通过分而治之的范式解决日益复杂的优化问题。从理论上讲,为了解决大规模优化问题,需要使用相互匹配的子组件。但是,实际上,在没有有关该问题的事先知识的情况下,不清楚如何分解该问题。在本文中,我们提出了一种称为微分分组的自动分解策略,该策略可以揭示决策变量的潜在交互结构并形成子组件,从而使它们之间的相互依赖性保持最小。我们以数学方式显示了如何从部分可分离性的定义中得出这种分解策略。实证研究表明,这种近似最优的分解可以极大地提高大规模全局优化问题的求解质量。最后,我们展示了这种自动分解如何更好地近似各个子组件的贡献,从而将计算预算更有效地分配给各个子组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号