首页> 外文期刊>IEEE transactions on evolutionary computation >Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers
【24h】

Balancing Convergence and Diversity in Decomposition-Based Many-Objective Optimizers

机译:在基于分解的多目标优化器中平衡收敛和多样性

获取原文
获取原文并翻译 | 示例

摘要

The decomposition-based multiobjective evolutionary algorithms (MOEAs) generally make use of aggregation functions to decompose a multiobjective optimization problem into multiple single-objective optimization problems. However, due to the nature of contour lines for the adopted aggregation functions, they usually fail to preserve the diversity in high-dimensional objective space even by using diverse weight vectors. To address this problem, we propose to maintain the desired diversity of solutions in their evolutionary process explicitly by exploiting the perpendicular distance from the solution to the weight vector in the objective space, which achieves better balance between convergence and diversity in many-objective optimization. The idea is implemented to enhance two well-performing decomposition-based algorithms, i.e., MOEA, based on decomposition and ensemble fitness ranking. The two enhanced algorithms are compared to several state-of-the-art algorithms and a series of comparative experiments are conducted on a number of test problems from two well-known test suites. The experimental results show that the two proposed algorithms are generally more effective than their predecessors in balancing convergence and diversity, and they are also very competitive against other existing algorithms for solving many-objective optimization problems.
机译:基于分解的多目标进化算法(MOEA)通常利用聚合函数将多目标优化问题分解为多个单目标优化问题。但是,由于采用的聚合函数的轮廓线的性质,即使使用不同的权重向量,它们通常也无法在高维目标空间中保留多样性。为了解决这个问题,我们建议通过在目标空间中利用从解到权重向量的垂直距离,明确地在解的演化过程中保持期望的解的多样性,从而在多目标优化中实现收敛和多样性之间的更好平衡。实现该思想的目的是基于分解和整体适应度排名来增强两种基于分解的性能良好的算法,即MOEA。将这两种增强算法与几种最新算法进行了比较,并对来自两个著名测试套件的许多测试问题进行了一系列比较实验。实验结果表明,所提出的两种算法在平衡收敛性和多样性方面通常比其先前的算法更有效,并且在解决多目标优化问题上与其他现有算法相比也非常有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号