首页> 外文期刊>Expert Systems with Application >A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization
【24h】

A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization

机译:多目标多目标优化中一种新的优势关系度量平衡收敛和多样性

获取原文
获取原文并翻译 | 示例

摘要

Maintaining a good balance between convergence and diversity in many-objective optimization is a key challenge for most Pareto dominance-based multi-objective evolutionary algorithms. In most existing multi-objective evolutionary algorithms, a certain fixed metric is used in the selection operation, no matter how far the solutions are from the Pareto front. Such a selection scheme directly affects the performance of the algorithm, such as its convergence, diversity or computational complexity. In this paper, we use a more structured metric, termed augmented penalty boundary intersection, which acts differently on each of the non-dominated fronts in the selection operation, to balance convergence and diversity in many-objective optimization problems. In diversity maintenance, we apply a distance-based selection scheme to each non-dominated front. The performance of our proposed algorithm is evaluated on a variety of benchmark problems with 3 to 15 objectives and compared with five state-of-the-art multi-objective evolutionary algorithms. The empirical results demonstrate that our proposed algorithm has highly competitive performance on almost all test instances considered. Furthermore, the combination of a special mate selection scheme and a clustering-based selection scheme considerably reduces the computational complexity compared to most state-of-the-art multi-objective evolutionary algorithms. (C) 2019 Elsevier Ltd. All rights reserved.
机译:对于大多数基于Pareto优势的多目标进化算法而言,在多目标优化中保持收敛和多样性之间的良好平衡是一项关键挑战。在大多数现有的多目标进化算法中,选择解决方案使用一定的固定度量,无论解决方案与帕累托前沿有多远。这样的选择方案直接影响算法的性能,例如其收敛性,多样性或计算复杂性。在本文中,我们使用结构化的度量标准,称为增罚惩罚边界相交,在选择操作中的每个非支配前沿上都有不同的作用,以平衡多目标优化问题中的收敛性和多样性。在多样性维护中,我们将基于距离的选择方案应用于每个非主导阵线。我们针对3至15个目标的各种基准问题对我们提出的算法的性能进行了评估,并与五种最新的多目标进化算法进行了比较。实验结果表明,我们提出的算法在几乎所有考虑的测试实例上都具有极强的竞争力。此外,与大多数最新的多目标进化算法相比,特殊的配偶选择方案和基于聚类的选择方案的组合大大降低了计算复杂性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号