首页> 外文期刊>IEEE transactions on evolutionary computation >An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design Problems
【24h】

An Adaptive Convergence-Trajectory Controlled Ant Colony Optimization Algorithm With Application to Water Distribution System Design Problems

机译:自适应收敛轨迹控制的蚁群优化算法及其在供水系统设计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary algorithms and other meta-heuristics have been employed widely to solve optimization problems in many different fields over the past few decades. Their performance in finding optimal solutions often depends heavily on the parameterization of the algorithm’s search operators, which affect an algorithm’s balance between search diversification and intensification. While many parameter-adaptive algorithms have been developed to improve the searching ability of meta-heuristics, their performance is often unsatisfactory when applied to real-world problems. This is, at least in part, because available computational budgets are often constrained in such settings due to the long simulation times associated with objective function and/or constraint evaluation, thereby preventing convergence of existing parameter-adaptive algorithms. To this end, this paper proposes an innovative parameter-adaptive strategy for ant colony optimization (ACO) algorithms based on controlling the convergence trajectory in decision space to follow any prespecified path, aimed at finding the best possible solution within a given, and limited, computational budget. The utility of the proposed convergence-trajectory controlled ACO (ACO ) algorithm is demonstrated using six water distribution system design problems (WDSDPs, a difficult type of combinatorial problem in water resources) with varying complexity. The results show that the proposed ACO successfully enables the specified convergence trajectories to be followed by automatically adjusting the algorithm’s parameter values. Different convergence trajectories significantly affect the algorithm’s final performance (solution quality). The trajectory with a slight bias toward diversification in the first half and more emphasis on intensification during the second half of the search exhibits substantially improved performance compared to the best available ACO variant with the best parameterization (no convergence control) for all WDSDPs and computational scenarios considered. For the two large-scale WDSDPs, new best-known solutions are found by the proposed ACO .
机译:在过去的几十年中,进化算法和其他元启发式方法已广泛用于解决许多不同领域中的优化问题。它们寻找最佳解决方案的性能通常在很大程度上取决于算法搜索运算符的参数设置,这会影响算法在搜索多样化和强化之间的平衡。尽管已经开发了许多参数自适应算法来提高元启发式算法的搜索能力,但将其应用于现实问题时,其性能通常不能令人满意。这至少部分地是因为由于与目标函数和/或约束评估相关联的漫长的仿真时间,可用的计算预算通常在这样的设置中受到限制,从而阻止了现有参数自适应算法的收敛。为此,本文提出了一种创新的参数自适应蚁群优化(ACO)算法的策略,该策略基于控制决策空间中的收敛轨迹以遵循任何预定路径,旨在在给定的有限范围内找到最佳的解决方案,计算预算。提出的收敛轨迹控制ACO(ACO)算法的实用性通过六个具有不同复杂度的水分配系统设计问题(WDSDP,一种在水资源中的难题)来证明。结果表明,所提出的ACO通过自动调整算法的参数值,成功地遵循了指定的收敛轨迹。不同的收敛轨迹会严重影响算法的最终性能(解决方案质量)。与所有WDSDP和计算方案中具有最佳参数化(无收敛控制)的最佳可用ACO变体相比,上半年在搜索的上半部分偏向多样化且在下半部分更多地强调强度的轨迹表现出明显改善的性能。考虑过的。对于两个大型WDSDP,建议的ACO找到了新的最著名的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号