首页> 外文期刊>IEEE transactions on evolutionary computation >Personalized Search Inspired Fast Interactive Estimation of Distribution Algorithm and Its Application
【24h】

Personalized Search Inspired Fast Interactive Estimation of Distribution Algorithm and Its Application

机译:个性化搜索启发分布算法的快速交互式估计及其应用

获取原文
获取原文并翻译 | 示例

摘要

Interactive evolutionary algorithms have been applied to personalized search, in which less user fatigue and efficient search are pursued. Motivated by this, we present a fast interactive estimation of distribution algorithm (IEDA) by using the domain knowledge of personalized search. We first induce a Bayesian model to describe the distribution of the new user's preference on the variables from the social knowledge of personalized search. Then we employ the model to enhance the performance of IEDA in two aspects, that is: 1) dramatically reducing the initial huge space to a preferred subspace and 2) generating the individuals of estimation of distribution algorithm(EDA) by using it as a probabilistic model. The Bayesian model is updated along with the implementation of the EDA. To effectively evaluate individuals, we further present a method to quantitatively express the preference of the user based on the human-computer interactions and train a radial basis function neural network as the fitness surrogate. The proposed algorithm is applied to a laptop search, and its superiorities in alleviating user fatigue and speeding up the search procedure are empirically demonstrated.
机译:交互式进化算法已应用于个性化搜索,其中追求更少的用户疲劳度和有效的搜索。基于此,我们利用个性化搜索的领域知识,提出了一种快速交互式的分布算法(IEDA)估计。我们首先通过贝叶斯模型描述个性化搜索的社会知识中变量上新用户偏好的分布。然后,我们使用该模型从两个方面来增强IEDA的性能,即:1)将初始巨大空间显着减少为首选子空间; 2)通过将其用作概率来生成估计分布算法(EDA)的个体模型。贝叶斯模型随着EDA的实施而更新。为了有效地评估个人,我们进一步提出了一种基于人机交互来定量表达用户偏好并训练径向基函数神经网络作为适应性替代指标的方法。将该算法应用于笔记本电脑搜索,并通过实验证明了其在减轻用户疲劳度和加快搜索过程方面的优越性。

著录项

  • 来源
    《IEEE transactions on evolutionary computation》 |2017年第4期|588-600|共13页
  • 作者单位

    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China;

    School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China;

    Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA;

    Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    IEC; Optimization; Estimation; Probabilistic logic; Bayes methods; Fatigue; Sociology;

    机译:IEC;优化;估计;概率逻辑;贝叶斯方法;疲劳;社会学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号