首页> 外文期刊>IEEE transactions on evolutionary computation >A Survey of Weight Vector Adjustment Methods for Decomposition-Based Multiobjective Evolutionary Algorithms
【24h】

A Survey of Weight Vector Adjustment Methods for Decomposition-Based Multiobjective Evolutionary Algorithms

机译:分解基基多目标进化算法的重量载体调整方法调查

获取原文
获取原文并翻译 | 示例

摘要

Multiobjective evolutionary algorithms based on decomposition (MOEA/D) have attracted tremendous attention and achieved great success in the fields of optimization and decision-making. MOEA/Ds work by decomposing the target multiobjective optimization problem (MOP) into multiple single-objective subproblems based on a set of weight vectors. The subproblems are solved cooperatively in an evolutionary algorithm framework. Since weight vectors define the search directions and, to a certain extent, the distribution of the final solution set, the configuration of weight vectors is pivotal to the success of MOEA/Ds. The most straightforward method is to use predefined and uniformly distributed weight vectors. However, it usually leads to the deteriorated performance of MOEA/Ds on solving MOPs with irregular Pareto fronts. To deal with this issue, many weight vector adjustment methods have been proposed by periodically adjusting the weight vectors in a random, predefined, or adaptive way. This article focuses on weight vector adjustment on a simplex and presents a comprehensive survey of these weight vector adjustment methods covering the weight vector adaptation strategies, theoretical analyses, benchmark test problems, and applications. The current limitations, new challenges, and future directions of weight vector adjustment are also discussed.
机译:基于分解(MOEA / D)的多目标进化算法引起了巨大的关注,并在优化和决策领域取得了巨大成功。基于一组权重向量,通过将目标多目标优化问题(MOP)分解为多个单目标子节点来处理MOEA / DS。子问题在进化算法框架中协同解决。由于权重向量定义了搜索方向,并且在一定程度上,最终解决方案集的分布,因此重量向量的配置对于MoEA / DS的成功而枢转。最直接的方法是使用预定义和均匀分布的权重向量。然而,它通常导致MOEA / DS在用不规则帕捕前线求解拖镜的劣化性能。为了处理这个问题,通过以随机,预定义或自适应方式定期调整权重向量来提出许多重量矢量调整方法。本文重点介绍了对Simplex的重量矢量调整,并提出了覆盖重量向量适应策略,理论分析,基准测试问题和应用程序的对这些体重矢量调整方法的综合调查。还讨论了当前的限制,新的挑战和未来的重量矢量调整方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号