首页> 外文期刊>IEEE transactions on evolutionary computation >IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems
【24h】

IGD Indicator-Based Evolutionary Algorithm for Many-Objective Optimization Problems

机译:基于IGD指标的进化算法,用于多目标优化问题

获取原文
获取原文并翻译 | 示例

摘要

Inverted generational distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multiobjective and many-objective evolutionary algorithms. In this paper, an IGD indicator-based evolutionary algorithm for solving manyobjective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each generation to select the solutions with favorable convergence and diversity. In addition, a computationally efficient dominance comparison method is designed to assign the rank values of solutions along with three newly proposed proximity distance assignments. Based on these two designs, the solutions are selected from a global view by linear assignment mechanism to concern the convergence and diversity simultaneously. In order to facilitate the accuracy of the sampled reference points for the calculation of IGD indicator, we also propose an efficient decomposition-based nadir point estimation method for constructing the Utopian Pareto front (PF) which is regarded as the best approximate PF for real-world MaOPs at the early stage of the evolution. To evaluate the performance, a series of experiments is performed on the proposed algorithm against a group of selected state-of-the-art many-objective optimization algorithms over optimization problems with 8-, 15-, and 20-objective. Experimental results measured by the chosen performance metrics indicate that the proposed algorithm is very competitive in addressing MaOPs.
机译:倒置代距(IGD)被广泛认为是可靠的性能指标,以同时量化多目标和多目标进化算法的收敛和多样性。本文已经提出了一种基于IGD指示器的进化算法,用于解决许多无论求解优化问题(MAOPS)。具体地,IGD指示器在每代采用,以选择具有良好收敛和多样性的解决方案。此外,计算有效的优势比较方法旨在为解决方案的等级值以及三个新提出的接近距离分配分配。基于这两个设计,通过线性分配机制从全局视图中选择了解决方案,以同时涉及收敛和多样性。为了便于计算IGD指标计算的采样参考点的准确性,我们还提出了一种基于有效的分解的Nadir点估计方法,用于构建乌托邦帕累托前部(PF),该方法被认为是最佳近似PF的真实 - 世界杂志在演变的早期阶段。为了评估性能,对针对一组选定的最先进的许多客观优化算法进行了一系列实验,通过8-,15-和20目标进行了优化问题。通过所选性能度量测量的实验结果表明所提出的算法在寻址Maops方面是非常竞争力的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号