首页> 外文期刊>IEEE transactions on evolutionary computation >Variable-Length Particle Swarm Optimization for Feature Selection on High-Dimensional Classification
【24h】

Variable-Length Particle Swarm Optimization for Feature Selection on High-Dimensional Classification

机译:高维分类中特征选择的变长粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

With a global search mechanism, particle swarm optimization (PSO) has shown promise in feature selection (FS). However, most of the current PSO-based FS methods use a fix-length representation, which is inflexible and limits the performance of PSO for FS. When applying these methods to high-dimensional data, it not only consumes a significant amount of memory but also requires a high computational cost. Overcoming this limitation enables PSO to work on data with much higher dimensionality which has become more and more popular with the advance of data collection technologies. In this paper, we propose the first variable-length PSO representation for FS, enabling particles to have different and shorter lengths, which defines smaller search space and therefore, improves the performance of PSO. By rearranging features in a descending order of their relevance, we facilitate particles with shorter lengths to achieve better classification performance. Furthermore, using the proposed length changing mechanism, PSO can jump out of local optima, further narrow the search space and focus its search on smaller and more fruitful area. These strategies enable PSO to reach better solutions in a shorter time. Results on ten high-dimensional datasets with varying difficulties show that the proposed variable-length PSO can achieve much smaller feature subsets with significantly higher classification performance in much shorter time than the fixed-length PSO methods. The proposed method also outperformed the compared non-PSO FS methods in most cases.
机译:通过全局搜索机制,粒子群优化(PSO)在特征选择(FS)中显示出了希望。但是,当前大多数基于PSO的FS方法都使用定长表示法,这种方法不灵活,并限制了FS的PSO性能。当将这些方法应用于高维数据时,它不仅消耗大量内存,而且还需要很高的计算成本。克服此限制,PSO可以处理具有更高维度的数据,随着数据收集技术的发展,维度越来越高。在本文中,我们提出了用于FS的第一个变长PSO表示,它使粒子具有不同且较短的长度,从而定义了较小的搜索空间,从而提高了PSO的性能。通过按相关性从高到低的顺序重新排列要素,我们可以简化长度较短的粒子以实现更好的分类性能。此外,使用提出的长度改变机制,PSO可以跳出局部最优值,进一步缩小搜索空间,并将搜索集中在更小,更富成果的区域。这些策略使PSO可以在更短的时间内达到更好的解决方案。在十个具有不同难度的高维数据集上的结果表明,与固定长度PSO方法相比,所提出的可变长度PSO可以在更短的时间内实现小得多的特征子集,并且具有明显更高的分类性能。在大多数情况下,提出的方法也优于比较的非PSO FS方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号