首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Dense Vector Embedding Based Approach to Identify Prominent Disseminators From Twitter Data Amid COVID-19 Outbreak
【24h】

Dense Vector Embedding Based Approach to Identify Prominent Disseminators From Twitter Data Amid COVID-19 Outbreak

机译:嵌入基于方法的密集矢量从Covid-19爆发中识别Twitter数据中突出的传播者

获取原文
获取原文并翻译 | 示例

摘要

The unprecedented transmission of the Coronavirus COVID-19 across the globe has grown to be a matter of prime concern for researchers, authorities, and healthcare professionals alike. Owing to the unavailability of vaccination, educating people is reckoned to be of utmost importance to mitigate the risk. With a plethora of unstructured data available on social media, it becomes crucial to comprehend information and use it effectively to combat COVID-19. A fine-grained knowledge base could be advantageous in developing a reliable social network for pandemic situations. However, there has been no prior finding related to the identification of disseminators forCOVID-19 and hence, there is a need to build a computationally intelligent system that utilizes the potential of a massive amount of data to disseminate information more effectively. In this work, we gathered Twitter data of 3.2 million unique users, consisting of over 12 million tweets. We divided our work into four parts. Firstly, by employing dense vector embedding, one of the techniques of the neural network, to generate semantically similar keywords. Secondly, we classified the collected data into three awareness categories i.e., information, prevention, and action. Thereafter, we used the statistical physics of complex networks to recognize prominent disseminators w.r.t. the identified categories. Finally, we sub-categorized the prominent disseminators into media, people, and organizations based on their profile information. From the result, we concluded that data generated broadly fall into information and prevention categories, whereas the print media, politicians, and health organizations are the forerunners of the selected prominent disseminators.
机译:全球冠状病毒Covid-19的前所未有的传播已经发展成为研究人员,当局和医疗保健专业人士的主要关注的问题。由于疫苗接种不可用,教育人们被认为是最重要的,以减轻风险。通过在社交媒体上提供的多种非结构化数据,可以理解信息并有效地用于打击Covid-19,这变得至关重要。细粒度知识库可能是有利的,在开发可靠的大流行情况的社交网络。然而,没有先前发现与传播者ForCovid-19的识别有关,因此需要建立一个计算智能系统,该系统利用大量数据的潜力更有效地传播信息。在这项工作中,我们收集了320万用户的Twitter数据,包括超过1200万推文。我们将我们的工作分为四个部分。首先,通过采用浓密的载体嵌入嵌入神经网络的技术之一,以产生语义上类似的关键词。其次,我们将收集的数据分为三个意识类别,即信息,预防和行动。此后,我们使用复杂网络的统计物理来识别突出的传播者W.R.T.确定的类别。最后,我们将突出的传播者分为媒体,人员和组织,基于其个人资料。从结果中,我们得出结论,产生的数据大致落入了信息和预防类别,而印刷媒体,政治家和卫生组织是所选突出传播者的先驱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号