首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >System Network Complexity: Network Evolution Subgraphs of System State Series
【24h】

System Network Complexity: Network Evolution Subgraphs of System State Series

机译:系统网络复杂性:系统状态系列的网络演进子图

获取原文
获取原文并翻译 | 示例

摘要

Era of computation intelligence leads to various kinds of systems that evolve. Usually, an evolving system contains evolving interconnected entities (or components) that make evolving networks for the system State Series ${ext{SS}},= ,{S_{1},,S_{2}ldots ,S_{N}}$ created over time, where S$_i$ represents the ith system state. In this paper, we introduce an approach for mining Network Evolution Subgraphs such as Network Evolution Graphlets (NEGs) and Network Evolution Motifs (NEMs) from a set of evolving networks. We used graphlets information of a state to calculate System State Complexity (SSC). The System State Complexities (SSCs) represent time-varying complexities of multiple states. Additionally, we also used the NEGs information to calculate Evolving System Complexity (ESC) for a state series over time. We proposed an algorithm named System Network Complexity (SNC) for mining NEGs, SSCs, and ESC, which analyzes a pre-evolved state series of an evolving system. We prototyped the technique as a tool named SNC-Tool, which is applied to six real-world evolving systems collected from open-internet repositories of four different domains: software system, natural language system, retail market basket system, and IMDb movie genres system. This is demonstrated as experimentation reports containing retrieved—NEGs, NEMs, SSCs, and ESC—for each evolving system.
机译:计算智能时代导致各种发展的系统。通常,不断变化的系统包含不断变化的互连实体(或组件),其使系统不断发展<斜体XMLNS:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>状态系列 <内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ { text {ss}} ,= , {s_ {s_ {1},,s_ {2} ldots ,s_ {n} } $ 随着时间的推移,在哪里<斜体xmlns:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> s <内联公式> < Tex-Math符号=“Latex”> $ _ i $ 代表<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> i th 系统状态。在本文中,我们介绍了采矿方法网络演进子图 如<斜体XMLNS:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>网络演进图 (Negs)和<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>网络演变图案 (NEMS)来自一组不断发展的网络。我们使用了一个状态的图形信息来计算系统状态复杂性 (SSC)。这<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>系统状态复杂性 (SSCS)表示多个状态的时变复杂性。此外,我们还使用NEGS信息来计算演化系统复杂性 (ESC)随着时间的推移。我们提出了一个名为的算法<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”>系统网络复杂性 (SNC)用于挖掘NEGS,SSC和ESC,其分析了一种不断发展的系统系列。我们将技术称为名为的工具<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> snc-tool ,它应用于从四个不同域的开放式互联网存储库中收集的六种现实不断发展的系统:软件系统,自然语言系统,零售市场篮系统和IMDB电影流派系统。这被证明为包含检索到的Negs,NEMS,SSC和ESC的实验报告,每个不断发展的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号