首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Differential Evolution With a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System
【24h】

Differential Evolution With a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System

机译:在无人机辅助物联网数据收集系统中具有可变人口大小的差分演变,用于部署优化

获取原文
获取原文并翻译 | 示例

摘要

This paper studies an unmanned aerial vehicle (UAV)-assisted Internet of Things (IoT) data collection system, where a UAV is employed as a data collection platform for a group of ground IoT devices. Our objective is to minimize the energy consumption of this system by optimizing the UAV's deployment, including the number and locations of stop points of the UAV. When using evolutionary algorithms to solve this UAV's deployment problem, each individual usually represents an entire deployment. Since the number of stop points is unknown a priori, the length of each individual in the population should be varied during the optimization process. Under this condition, the UAV's deployment is a variable-length optimization problem and the traditional fixed-length mutation and crossover operators should be modified. In this paper, we propose a differential evolution algorithm with a variable population size, called DEVIPS, for optimizing the UAV's deployment. In DEVIPS, the location of each stop point is encoded into an individual, and thus the whole population represents an entire deployment. Over the course of evolution, differential evolution is employed to produce offspring. Afterward, we design a strategy to adjust the population size according to the performance improvement. By this strategy, the number of stop points can be increased, reduced, or kept unchanged adaptively. In DEVIPS, since each individual has a fixed length, the UAV's deployment becomes a fixed-length optimization problem and the traditional fixed-length mutation and crossover operators can be used directly. The performance of DEVIPS is compared with that of five algorithms on a set of instances. The experimental studies demonstrate its effectiveness.
机译:本文研究了一个无人驾驶飞行器(UAV)的东西互联网(物联网)数据收集系统,其中UAV被用作一组接地IOT设备的数据收集平台。我们的目的是通过优化UAV的部署,包括无人机的停止点的数量和位置来最大限度地减少该系统的能源消耗。使用进化算法解决此UAV的部署问题时,每个人通常代表整个部署。由于停止点的数量未知,因此在优化过程中应在群体中的每个单独的长度变化。在这种情况下,UAV的部署是一个可变长度的优化问题,应修改传统的固定长度突变和交叉运算符。在本文中,我们提出了一种具有可变种群大小的差分演进算法,称为Devips,以优化UAV的部署。在Devips中,每个停止点的位置被编码为个体,因此整个群体代表整个部署。在进化过程中,采用差异进化来产生后代。之后,我们设计了根据性能改进调整人口大小的策略。通过这种策略,可以增加,减少止损点的数量,或者保持不变。在DEVIPP中,由于每个单独的具有固定长度,因此UAV的部署成为固定长度的优化问题,并且可以直接使用传统的固定长度突变和交叉运算符。将Devips的性能与一组实例上的五种算法进行了比较。实验研究表明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号