首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Monitoring Wind Turbines' Unhealthy Status: A Data-Driven Approach
【24h】

Monitoring Wind Turbines' Unhealthy Status: A Data-Driven Approach

机译:监测风力发电机的不良状态:一种数据驱动的方法

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring plays an important role in wind turbine maintenance, wherein monitoring turbines' unhealthy statuses, mainly those not-runnable statuses causing turbines stop working, could be beneficial in both maintenance cost and wind power generation. A data-driven approach based on support vector data description (SVDD) and extreme learning machine (ELM) algorithms is proposed in this paper to realize effective monitoring on wind turbines' unhealthy status. The SVDD algorithm is applied to separate data of unhealthy statuses from the healthy one. The ELM algorithm is used to construct a classifier for monitoring unhealthy (not-runnable) statuses of wind turbines. Industrial data from real wind farms are studied. Numerical results illustrate the feasibility of the proposed approach, and comparison studies with six monitoring algorithms validate that the proposed two-phase model could obtain better performance than other models.
机译:状态监视在风力涡轮机维护中起着重要作用,其中监视涡轮机的不健康状态(主要是那些导致涡轮机停止运行的不可运行状态)可能对维护成本和风力发电均有益。本文提出了一种基于支持向量数据描述(SVDD)和极限学习机(ELM)算法的数据驱动方法,以实现对风机不良状态的有效监测。 SVDD算法用于将不健康状态的数据与健康状态分开。 ELM算法用于构造分类器,以监视风力涡轮机的不健康(不可运行)状态。研究了来自真实风电场的工业数据。数值结果说明了该方法的可行性,并与六种监测算法进行了比较研究,验证了该两相模型可以比其他模型获得更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号