首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >EGEP: An Event Tracker Enhanced Gene Expression Programming for Data Driven System Engineering Problems
【24h】

EGEP: An Event Tracker Enhanced Gene Expression Programming for Data Driven System Engineering Problems

机译:EGEP:针对数据驱动系统工程问题的事件跟踪器增强型基因表达程序

获取原文
获取原文并翻译 | 示例

摘要

Gene expression programming (GEP) is a data driven evolutionary technique that is well suited to correlation mining of system components. With the rapid development of industry 4.0, the number of components in a complex industrial system has increased significantly with a high complexity of correlations. As a result, a major challenge in employing GEP to solve system engineering problems lies in computation efficiency of the evolution process. To address this challenge, this paper presents EGEP, an event tracker enhanced GEP, which filters irrelevant system components to ensure the evolution process to converge quickly. Furthermore, we introduce three theorems to mathematically validate the effectiveness of EGEP based on a GEP schema theory. Experiment results also confirm that EGEP outperforms the GEP with a shorter computation time in an evolution.
机译:基因表达编程(GEP)是一种数据驱动的进化技术,非常适合于系统组件的相关挖掘。随着工业4.0的飞速发展,复杂的工业系统中组件的数量已显着增加,并且相关性也很高。结果,采用GEP解决系统工程问题的主要挑战在于演进过程的计算效率。为了应对这一挑战,本文介绍了事件跟踪器增强型GEP EGEP,该过滤器过滤不相关的系统组件,以确保进化过程快速收敛。此外,我们介绍了三个定理,以基于GEP模式理论的数学方法验证EGEP的有效性。实验结果还证实,在进化过程中,EGEP的性能优于GEP,且计算时间更短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号