首页> 外文期刊>IEEE transactions on dependable and secure computing >LAW: Learning Automatic Windows for Online Payment Fraud Detection
【24h】

LAW: Learning Automatic Windows for Online Payment Fraud Detection

机译:法律:学习在线支付欺诈检测的自动窗口

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of internet finance has caused increasing concern in online payment fraud due to its great threat. It is typical to employ rule systems or machine learning-based techniques to detect frauds. For the most significant features of such fraudulent transactions are exhibited in a sequential form, the sliding time window is a widely-recognized effective tool for this problem. With a sliding time window, features about the transaction characteristics can be extracted, and the latent patterns hidden in transaction records can be captured. However, the adaptive setting of sliding time window is really a big challenge, since the transaction patterns in real-life application scenarios are often too elusive to be captured. As a matter of fact, the practical setting usually needs to be updated and refined with manual intervention regularly. This is time-consuming indeed. In this article, we pursue an adaptive learning approach to detect fraudulent online payment transactions with automatic sliding time windows. Accordingly, we make efforts on optimizing the setting of windows and improving the adaptability. We design an intelligent window, called learning automatic window (LAW). It utilizes the learning automata to learn the proper parameters of time windows and adjust them dynamically and regularly according to the variation and oscillation of fraudulent transaction patterns. By the experiments over a real-world dataset of the online payment service from a commercial bank, we validate the gain of LAW in terms of detection effectiveness and robustness. To the best of our knowledge, this is the first work to make a sliding time window for fraud detection capable of learning its proper size in changing situations.
机译:由于其巨大威胁,互联网金融的快速发展导致在线支付欺诈的越来越多。使用规则系统或基于机器学习的技术是典型的,以检测欺诈。对于这种欺诈性交易的最重要特征,以顺序形式展出,滑动时间窗口是一个广泛认可的有效工具。使用滑动时间窗口,可以提取关于事务特征的特征,并且可以捕获在事务记录中隐藏的潜在模式。然而,滑动时间窗口的自适应设置真的是一个很大的挑战,因为现实生活中的事业模式中的交易模式往往太难以被捕获。事实上,通常需要使用手动干预进行更新和精制实际设置。这确实是耗时的。在本文中,我们追求自适应学习方法来检测与自动滑动时间窗口的欺诈在线支付交易。因此,我们努力优化Windows的设置并提高适应性。我们设计一个智能窗口,称为学习自动窗口(法律)。它利用学习自动机学习时间窗口的适当参数,并根据欺诈事务模式的变化和振荡动态地调整它们。通过对商业银行的在线支付服务的现实世界数据集的实验,我们在检测效果和稳健性方面验证了法律的收益。据我们所知,这是第一个为欺诈检测制作滑动时间窗口的工作,能够在改变情况下学习其适当的尺寸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号