首页> 外文期刊>IEEE transactions on dependable and secure computing >A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers
【24h】

A Machine Learning-Based Intrusion Detection System for Securing Remote Desktop Connections to Electronic Flight Bag Servers

机译:一种基于机器学习的入侵检测系统,用于将远程桌面连接固定到电子飞行袋服务器

获取原文
获取原文并翻译 | 示例

摘要

Remote desktop protocols (RDP) are commonly used for connecting and interacting with computers remotely. In this case, a server component runs on the remote computer and shares its desktop (i.e., screen) with the client component which runs on an end user device. In recent years, a number of vulnerabilities have been identified in two widely used remote desktop implementations, Microsoft Remote Desktop and RealVNC. These vulnerabilities may expose the remote server to a new attack vector. This concern is increased when it comes to a cyber-physical system (CPS) in which a client device with a low trust level connects to the critical system via the remote desktop server. In order to mitigate this risk, in this paper we propose a network based intrusion detection system (NIDS) specifically designed for securing the remote desktop connections. The propose method utilizes an innovative anomaly detection technique based on machine learning for detecting malicious TCP packets, which can carry exploits aimed at the RDP server. An empirical evaluation conducted on an avionic system setup consisting of a commercial tablet (Samsung Galaxy Tab) connected through a Virtual Network Computing (VNC) remote desktop implementation to a real electronic flight bag (EFB) server shows that the proposed method can detect malicious packets carrying real exploits (reported in recent years) with a true positive rate of 0.863 and a false positive rate of 0.0001.
机译:远程桌面协议(RDP)通常用于远程连接和交互计算机。在这种情况下,服务器组件在远程计算机上运行,​​并使用在最终用户设备上运行的客户端组件共享其桌面(即,屏幕)。近年来,已经在两个广泛使用的远程桌面实现,Microsoft远程桌面和RealVNC中识别了许多漏洞。这些漏洞可能会将远程服务器暴露给新的攻击向量。当涉及到一个网络物理系统(CPS)时,这种担忧会增加,其中具有低信任级别的客户端设备通过远程桌面服务器连接到关键系统。为了减轻这种风险,在本文中,我们提出了一种专门用于保护远程桌面连接的基于网络的入侵检测系统(NID)。该提议方法利用基于机器学习的创新异常检测技术来检测恶意TCP数据包,这可以携带针对RDP服务器的漏洞。对航空系统设置进行的经验评估,由通过虚拟网络计算(VNC)远程桌面实现连接到真正的电子飞行袋(EFB)服务器的商业平板电脑(三星Galaxy Tab),显示该方法可以检测恶意数据包携带真实的漏洞(近年来报道),真正的阳性率为0.863,误率为0.0001。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号