首页> 外文期刊>IEEE transactions on dependable and secure computing >Differentially Private Publication of Vertically Partitioned Data
【24h】

Differentially Private Publication of Vertically Partitioned Data

机译:垂直分区数据的差异私有出版物

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of publishing vertically partitioned data under differential privacy, where different attributes of the same set of individuals are held by multiple parties. In this setting, with the assistance of a semi-trusted curator, the involved parties aim to collectively generate an integrated dataset while satisfying differential privacy for each local dataset. Based on the latent tree model (LTM), we present a differentially private latent tree (DPLT) approach, which is, to the best of our knowledge, the first approach to solving this challenging problem. In DPLT, the parties and the curator collaboratively identify the latent tree that best approximates the joint distribution of the integrated dataset, from which a synthetic dataset can be generated. The fundamental advantage of adopting LTM is that we can use the connections between a small number of latent attributes derived from each local dataset to capture the cross-dataset dependencies of the observed attributes in all local datasets such that the joint distribution of the integrated dataset can be learned with little injected noise and low computation and communication costs. DPLT is backed up by a series of novel techniques, including two-phase latent attribute generation (TLAG), tree index based correlation quantification (TICQ) and distributed Laplace perturbation protocol (DLPP). Extensive experiments on real datasets demonstrate that DPLT offers desirable data utility with low computation and communication costs.
机译:在本文中,我们研究了在差异隐私下发布垂直分区数据的问题,其中同一组各个的不同属性由多方持有。在此设置中,在半信用策展程序的帮助下,所涉及的各方旨在共同生成集成的数据集,同时满足每个本地数据集的差异隐私。基于潜在树模型(LTM),我们呈现出差异私有的潜在潜在的树(DPLT)方法,这是我们所知的第一种解决这一具有挑战性问题的方法。在DPLT中,各方和策展人协同识别最能逼近集成数据集的联合分布的潜像,从中可以生成合成数据集。采用LTM的基本优势是我们可以使用从每个本地数据集导出的少数潜在属性之间的连接来捕获所有本地数据集中观察属性的跨数据集依赖性,使得集成数据集的联合分布可以学习刚注入的噪音很少,计算和通信成本很少。 DPLT由一系列新颖的技术备份,包括两相潜在的属性生成(TLAG),基于树索引的相关量化(TiCQ)和分布式Laplace扰动协议(DLPP)。关于实时数据集的广泛实验表明DPLT提供了具有低计算和通信成本的理想数据实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号