首页> 外文期刊>IEEE transactions on dependable and secure computing >Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure
【24h】

Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure

机译:智能计量基础设施中隐藏数据伪造的检测和取证

获取原文
获取原文并翻译 | 示例

摘要

False power consumption data injected from compromised smart meters in Advanced Metering Infrastructure (AMI) of smart grids is a threat that negatively affects both customers and utilities. In particular, organized and stealthy adversaries can launch various types of data falsification attacks from multiple meters using smart or persistent strategies. In this paper, we propose a real time, two tier attack detection scheme to detect orchestrated data falsification under a sophisticated threat model in decentralized micro-grids. The first detection tier monitors whether the Harmonic to Arithmetic Mean Ratio of aggregated daily power consumption data is outside a normal range known as safe margin. To confirm whether discrepancies in the first detection tier is indeed an attack, the second detection tier monitors the sum of the residuals (difference) between the proposed ratio metric and the safe margin over a frame of multiple days. If the sum of residuals is beyond a standard limit range, the presence of a data falsification attack is confirmed. Both the 'safe margins' and the 'standard limits' are designed through a 'system identification phase', where the signature of proposed metrics under normal conditions are studied using real AMI micro-grid data sets from two different countries over multiple years. Subsequently, we show how the proposed metrics trigger unique signatures under various attacks which aids in attack reconstruction and also limit the impact of persistent attacks. Unlike metrics such as CUSUM or EWMA, the stability of the proposed metrics under normal conditions allows successful real time detection of various stealthy attacks with ultra-low false alarms.
机译:从智能电网的高级计量基础设施(AMI)中受损的智能仪表中注入的假功耗数据是对客户和公用事业的负面影响的威胁。特别是,有组织和隐身的对手可以使用智能或持久策略从多米开始从多米开始各种类型的数据伪造攻击。在本文中,我们提出了一个实时,两个层次攻击检测方案,以在分散的微网格中的复杂威胁模型下检测策划数据伪造。第一检测层监视谐波是否与聚合的日常功耗数据的算术平均比率在正常范围内称为安全裕度。为了确认第一检测层中的差异是否确实是一种攻击,第二种检测层监视所提出的比率度量和安全裕度之间的帧之间的残差(差异)的总和。如果残差之和超出标准限制范围,则确认数据伪造攻击的存在。 “安全利润”和“标准限制”都是通过“系统识别阶段”设计的,其中使用来自两年不同国家的真实AMI微网格数据集研究了正常条件下的拟议度量标准的签名。随后,我们展示了所提出的指标如何在各种攻击下触发唯一的签名,这有助于攻击重建,并限制持续攻击的影响。与CUSUM或EWMA等指标不同,在正常情况下提出的指标的稳定性允许成功地实时检测超低误报的各种隐形攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号