首页> 外文期刊>IEEE transactions on dependable and secure computing >Entrusting Private Computation and Data to Untrusted Networks
【24h】

Entrusting Private Computation and Data to Untrusted Networks

机译:将私有计算和数据委托给不受信任的网络

获取原文
获取原文并翻译 | 示例

摘要

We present sTile, a technique for distributing trust-needing computation onto insecure networks, while providing probabilistic guarantees that malicious agents that compromise parts of the network cannot learn private data. With sTile, we explore the fundamental cost of achieving privacy through data distribution and bound how much less efficient a privacy-preserving system is than a nonprivate one. This paper focuses specifically on NP-complete problems and demonstrates how sTile-based systems can solve important real-world problems, such as protein folding, image recognition, and resource allocation. We present the algorithms involved in sTile and formally prove that sTile-based systems preserve privacy. We develop a reference sTile-based implementation and empirically evaluate it on several physical networks of varying sizes, including the globally distributed PlanetLab testbed. Our analysis demonstrates sTile's scalability and ability to handle varying network delay, as well as verifies that problems requiring privacy-preservation can be solved using sTile orders of magnitude faster than using today's state-of-the-art alternatives.
机译:我们介绍了sTile,它是一种将需要信任的计算分发到不安全网络上的技术,同时提供了概率保证,危害网络部分的恶意代理无法学习私有数据。借助sTile,我们探索了通过数据分发实现隐私的基本成本,并确定了隐私保护系统比非隐私系统效率低多少。本文专门针对NP完全问题,并说明基于sTile的系统如何解决重要的现实问题,例如蛋白质折叠,图像识别和资源分配。我们介绍了sTile中涉及的算法,并正式证明了基于sTile的系统可以保护隐私。我们开发了一个基于sTile的参考实现,并在包括大小分布的PlanetLab测试床在内的多个大小不同的物理网络上进行了经验评估。我们的分析证明了sTile的可扩展性和处理变化的网络延迟的能力,并验证了使用sTile可以比使用当今最新的替代方案更快地解决需要保护隐私的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号