首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >GTID: A Technique for Physical Device and Device Type Fingerprinting
【24h】

GTID: A Technique for Physical Device and Device Type Fingerprinting

机译:GTID:一种用于物理设备设备类型指纹的技术

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce GTID, a technique that can actively and passively fingerprint wireless devices and their types using wire-side observations in a local network. GTID exploits information that is leaked as a result of heterogeneity in devices, which is a function of different device hardware compositions and variations in devices’ clock skew. We apply statistical techniques on network traffic to create unique, reproducible device and device type signatures, and use artificial neural networks (ANNs) for classification. We demonstrate the efficacy of our technique on both an isolated testbed and a live campus network (during peak hours) using a corpus of 37 devices representing a wide range of device classes (e.g., iPads, iPhones, Google Phones, etc.) and traffic types (e.g., Skype, SCP, ICMP, etc.). Our experiments provided more than 300 GB of traffic captures which we used for ANN training and performance evaluation. In order for any fingerprinting technique to be practical, it must be able to detect previously unseen devices (i.e., devices for which no stored signature is available) and must be able to withstand various attacks. GTID is a fingerprinting technique to detect previously unseen devices and to illustrate its resilience under various attacker models. We measure the performance of GTID by considering accuracy, recall, and processing time and also illustrate how it can be used to complement existing security mechanisms (e.g., authentication systems) and to detect counterfeit devices.
机译:在本文中,我们介绍了GTID,该技术可以使用本地网络中的线路侧观察来主动和被动地对无线设备及其类型进行指纹识别。 GTID利用由于设备异质性而泄漏的信息,这是不同设备硬件组成和设备时钟偏斜变化的函数。我们将统计技术应用于网络流量,以创建唯一的,可复制的设备和设备类型签名,并使用人工神经网络(ANN)进行分类。我们使用37个代表各种设备类别(例如,iPad,iPhone,Google Phone等)的设备的流量证明了该技术在孤立的测试台和现场校园网络(高峰时段)上的功效。类型(例如Skype,SCP,ICMP等)。我们的实验提供了超过300 GB的流量捕获,用于ANN训练和性能评估。为了使任何指纹技术都可行,它必须能够检测以前看不见的设备(即,没有可用的存储签名的设备),并且必须能够经受各种攻击。 GTID是一种指纹技术,用于检测以前看不见的设备并说明其在各种攻击者模型下的弹性。我们通过考虑准确性,召回率和处理时间来衡量GTID的性能,并说明如何将其用于补充现有的安全机制(例如身份验证系统)并检测假冒设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号