首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel
【24h】

Collusion-Tolerable Privacy-Preserving Sum and Product Calculation without Secure Channel

机译:不具有安全通道的可允许共谋保护隐私的总和和产品计算

获取原文
获取原文并翻译 | 示例

摘要

Much research has been conducted to securely outsource multiple parties’ data aggregation to an untrusted aggregator without disclosing each individual’s privately owned data, or to enable multiple parties to jointly aggregate their data while preserving privacy. However, those works either require secure pair-wise communication channels or suffer from high complexity. In this paper, we consider how an external aggregator or multiple parties can learn some algebraic statistics (e.g., sum, product) over participants’ privately owned data while preserving the data privacy. We assume all channels are subject to eavesdropping attacks, and all the communications throughout the aggregation are open to others. We first propose several protocols that successfully guarantee data privacy under semi-honest model, and then present advanced protocols which tolerate up to passive adversaries who do not try to tamper the computation. Under this weak assumption, we limit both the communication and computation complexity of each participant to a small constant. At the end, we present applications which solve several interesting problems via our protocols.
机译:已经进行了很多研究,以安全地将多方的数据聚合外包给不受信任的聚合器,而无需透露每个人的私有数据,或者使多方可以在保护隐私的同时联合聚合其数据。但是,这些作品要么需要安全的成对通信通道,要么会面临很高的复杂性。在本文中,我们考虑了外部聚合商或多方如何在不影响参与者私有数据的情况下学习一些代数统计信息(例如,总和,乘积)。我们假设所有渠道都受到窃听攻击,并且整个聚合过程中的所有通信都对其他渠道开放。我们首先提出几种可以在半诚实模型下成功保证数据隐私的协议,然后提出可以容忍不尝试篡改计算的被动对手的高级协议。在这种弱假设下,我们将每个参与者的通信和计算复杂度都限制在一个较小的常数内。最后,我们介绍了通过我们的协议解决了一些有趣问题的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号