首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Privacy-Preserving Friendship-Based Recommender Systems
【24h】

Privacy-Preserving Friendship-Based Recommender Systems

机译:基于隐私保护的友谊推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Privacy-preserving recommender systems have been an active research topic for many years. However, until today, it is still a challenge to design an efficient solution without involving a fully trusted third party or multiple semi-trusted third parties. The key obstacle is the large underlying user populations (i.e., huge input size) in the systems. In this paper, we revisit the concept of friendship-based recommender systems, proposed by Jeckmans et al. and Tang and Wang. These solutions are very promising because recommendations are computed based on inputs from a very small subset of the overall user population (precisely, a user's friends and some randomly chosen strangers). We first clarify the single prediction protocol and Top-n protocol by Tang and Wang, by correcting some flaws and improving the efficiency of the single prediction protocol. We then design a decentralized single protocol by getting rid of the semi-honest service provider. In order to validate the designed protocols, we crawl Twitter and construct two datasets (FMT and 10-FMT) which are equipped with auxiliary friendship information. Based on 10-FMT and MovieLens 100k dataset with simulated friendships, we show that even if our protocols use a very small subset of the datasets, their accuracy can still be equal to or better than some baseline algorithm. Based on these datasets, we further demonstrate that the outputs of our protocols leak very small amount of information of the inputs, and the leakage decreases when the input size increases. We finally show that he single prediction protocol is quite efficient but the Top-n is not. However, we observe that the efficiency of the Top-n protocol can be dramatically improved if we slightly relax the desired security guarantee.
机译:多年来,保护隐私的推荐系统一直是活跃的研究主题。但是,直到今天,在不涉及完全受信任的第三方或多个半受信任的第三方的情况下,设计有效的解决方案仍然是一个挑战。关键的障碍是系统中庞大的底层用户群体(即巨大的输入规模)。在本文中,我们重新审视了Jeckmans等人提出的基于友谊的推荐系统的概念。和唐和王。这些解决方案非常有前途,因为建议是基于来自整个用户群的一小部分(准确地说是用户的朋友和一些随机选择的陌生人)的输入来计算的。我们首先通过纠正一些缺陷并提高单个预测协议的效率,来阐明Tang和Wang提出的单个预测协议和Top-n协议。然后,我们通过摆脱半诚实的服务提供商来设计分散的单个协议。为了验证设计的协议,我们爬网Twitter并构造了两个数据集(FMT和10-FMT),这些数据集配备了辅助友谊信息。基于具有模拟友谊的10-FMT和MovieLens 100k数据集,我们表明,即使我们的协议使用数据集的很小子集,其准确性仍可以等于或优于某些基线算法。基于这些数据集,我们进一步证明了协议的输出会泄漏很少量的输入信息,并且当输入大小增加时泄漏会减少。我们最终证明,单一预测协议非常有效,而Top-n则不然。但是,我们观察到,如果我们稍微放松所需的安全性保证,可以极大地提高Top-n协议的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号