首页> 外文期刊>IEEE transactions on dependable and secure computing >Privacy-Preserving Multi-Keyword Top-$k$ k
【24h】

Privacy-Preserving Multi-Keyword Top-$k$ k

机译:隐私保护多关键字Top- $ k $ k

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing provides individuals and enterprises massive computing power and scalable storage capacities to support a variety of big data applications in domains like health care and scientific research, therefore more and more data owners are involved to outsource their data on cloud servers for great convenience in data management and mining. However, data sets like health records in electronic documents usually contain sensitive information, which brings about privacy concerns if the documents are released or shared to partially untrusted third-parties in cloud. A practical and widely used technique for data privacy preservation is to encrypt data before outsourcing to the cloud servers, which however reduces the data utility and makes many traditional data analytic operators like keyword-based top-k document retrieval obsolete. In this paper, we investigate the multi-keyword top-k search problem for big data encryption against privacy breaches, and attempt to identify an efficient and secure solution to this problem. Specifically, for the privacy concern of query data, we construct a special tree-based index structure and design a random traversal algorithm, which makes even the same query to produce different visiting paths on the index, and can also maintain the accuracy of queries unchanged under stronger privacy. For improving the query efficiency, we propose a group multi-keyword top-k search scheme based on the idea of partition, where a group of tree-based indexes are constructed for all documents. Finally, we combine these methods together into an efficient and secure approach to address our proposed top-k similarity search. Extensive experimental results on real-life data sets demonstrate that our proposed approach can significantly improve the capability of defending the privacy breaches, the scalability and the time efficiency of query processing over the state-of-the-art methods.
机译:云计算为个人和企业提供了巨大的计算能力和可扩展的存储能力,以支持医疗保健和科学研究等领域中的各种大数据应用程序,因此越来越多的数据所有者参与将其数据外包到云服务器上,以提供极大的数据便利性。管理和采矿。但是,像电子文档中的健康记录这样的数据集通常包含敏感信息,如果将文档发布或共享给云中部分不受信任的第三方,则会带来隐私问题。一种用于数据隐私保护的实用且广泛使用的技术是在将数据外包给云服务器之前先对数据进行加密,但这降低了数据实用性,并使许多传统的数据分析操作员(如基于关键字的top-k文档检索)过时了。在本文中,我们研究了针对大数据加密的多关键字top-k搜索问题,以防止违反隐私的行为,并尝试确定一种有效且安全的解决方案。具体而言,针对查询数据的隐私问题,我们构造了一种特殊的基于树的索引结构并设计了一种随机遍历算法,该算法即使是同一查询也可以在索引上产生不同的访问路径,并且还可以保持查询准确性不变在更强的隐私下。为了提高查询效率,我们提出了一种基于分区思想的多关键字top-k分组搜索方案,其中为所有文档构造了一组基于树的索引。最后,我们将这些方法结合在一起,成为一种有效且安全的方法,可以解决我们提出的top-k相似性搜索。在现实生活中的数据集上的大量实验结果表明,我们提出的方法可以极大地提高防御隐私漏洞的能力,可扩展性以及查询处理的时间效率,而不是最新的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号