首页> 外文期刊>IEEE transactions on dependable and secure computing >Leveraging Compression-Based Graph Mining for Behavior-Based Malware Detection
【24h】

Leveraging Compression-Based Graph Mining for Behavior-Based Malware Detection

机译:利用基于压缩的图挖掘进行基于行为的恶意软件检测

获取原文
获取原文并翻译 | 示例

摘要

Behavior-based detection approaches commonly address the threat of statically obfuscated malware. Such approaches often use graphs to represent process or system behavior and typically employ frequency-based graph mining techniques to extract characteristic patterns from collections of malware graphs. Recent studies in the molecule mining domain suggest that frequency-based graph mining algorithms often perform sub-optimally in finding highly discriminating patterns. We propose a novel malware detection approach that uses so-called compression-based mining on quantitative data flow graphs to derive highly accurate detection models. Our evaluation on a large and diverse malware set shows that our approach outperforms frequency-based detection models in terms of detection effectiveness by more than 600 percent.
机译:基于行为的检测方法通常可解决静态混淆的恶意软件的威胁。此类方法通常使用图形来表示过程或系统行为,并且通常采用基于频率的图形挖掘技术从恶意软件图形的集合中提取特征模式。分子挖掘领域的最新研究表明,基于频率的图挖掘算法通常在发现高度区分的模式时表现欠佳。我们提出了一种新颖的恶意软件检测方法,该方法在定量数据流图上使用所谓的基于压缩的挖掘,以得出高度准确的检测模型。我们对各种大型恶意软件的评估表明,在检测效率方面,我们的方法优于基于频率的检测模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号