首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Efficient algorithms for the minimum shortest path Steiner arborescence problem with applications to VLSI physical design
【24h】

Efficient algorithms for the minimum shortest path Steiner arborescence problem with applications to VLSI physical design

机译:最小最短路径斯坦纳树状化问题的高效算法及其在VLSI物理设计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected graph G=(V, E) with positive edge weights (lengths) /spl omega/: E/spl rarr//spl Rfr//sup +/, a set of terminals (sinks) N/spl sube/V, and a unique root node e/spl epsiv/N, a shortest path Steiner arborescence (hereafter an arborescence) is a Steiner tree rooted at, spanning all terminals in N such that every source-to-sink path is a shortest path in G. Given a triple (G, N, r), the minimum shortest path Steiner arborescence (MSPSA) problem seeks an arborescence with minimum weight. The MSPSA problem has various applications in the areas of physical design of very large-scale integrated circuits (VLSI), multicast network communication, and supercomputer message routing; various eases have been studied in the literature. In this paper, we propose several heuristics and exact algorithms for the MSPSA problem with applications to VLSI physical design. Experiments indicate that our heuristics generate near optimal results and achieve speedups of orders of magnitude over existing algorithms.
机译:给定一个无向图G =(V,E),且边权重为正数(长度)/ spl omega /:E / spl rarr // spl Rfr // sup + /,一组端子(接收器)N / spl sube / V ,以及唯一的根节点e / spl epsiv / N,最短路径Steiner树状结构(以下称树状结构)是植根于Steiner树的树,它跨越N中的所有终端,因此每个源到宿路径都是G中的最短路径给定三元组(G,N,r),最小最短路径Steiner树状结构(MSPSA)问题寻求具有最小权重的树状结构。 MSPSA问题在超大规模集成电路(VLSI)的物理设计,多播网络通信和超级计算机消息路由领域中有各种应用。在文献中已经研究了各种便利。在本文中,我们针对MSPSA问题提出了几种启发式算法和精确算法,并将其应用于VLSI物理设计中。实验表明,我们的启发式方法产生了接近最佳的结果,并且比现有算法实现了数量级的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号