首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >EWA: efficient wiring-sizing algorithm for signal nets and clock nets
【24h】

EWA: efficient wiring-sizing algorithm for signal nets and clock nets

机译:EWA:信号网和时钟网的高效布线算法

获取原文
获取原文并翻译 | 示例

摘要

The wire sizing problem under inequality Elmore delay constraints is known to be posynomial, hence convex under an exponential variable transformation. Due to their efficiency and ease of implementation, one-wire-at-a-time downhill improvement heuristics are often applied to solve such problems. Unfortunately, when there are complex boundary constraints, the solutions from such heuristics can be far away from the global minimum. There are formal methods for solving convex programs, but they are too costly in terms of runtime for some applications. Some optimization techniques can be quite efficient but they solve less desirable formulations, such as minimum weighted sum of area and critical path delays. This paper proposes an efficient wire-sizing algorithm (EWA) that is able to trade solution accuracy for time efficiency while providing an upper bound on the distance from the optimal solution. EWA solves the practical problem of minimizing the total wiring area or the capacitance of an interconnect RC tree subject to hard constraints on the Elmore delay. The implementation is simple and efficiency is comparable to the available heuristics. No restrictions are placed on the circuit or wire widths. Furthermore, it is shown that the optimal wire width assignment for a minimum wiring area objective satisfies all the delay constraints as equalities when minimum wire width constraints are not active. It follows that EWA can be applied for problems with equality delay constraints such as clock trees. Moreover, this and other properties are general enough to permit extensions to higher order delay models and can be used to enhance other optimization methods.
机译:已知在不等式Elmore延迟约束下的导线尺寸问题是多项式的,因此在指数变量变换下凸出。由于其效率高且易于实施,因此经常采用单线一次的下坡改进试探法来解决此类问题。不幸的是,当存在复杂的边界约束时,这种启发式方法的解决方案可能与全局最小值相距甚远。有解决凸程序的正式方法,但是对于某些应用程序而言,它们的运行时成本太高。一些优化技术可能非常有效,但是它们解决了不太理想的公式,例如面积的最小加权总和和关键路径延迟。本文提出了一种有效的导线定径算法(EWA),该算法可以权衡解决方案精度以节省时间,同时提供距最佳解决方案的距离的上限。 EWA解决了实际问题,即在受到Elmore延迟的严格约束的情况下,使总布线面积或互连RC树的电容最小。实现简单,效率可与可用的启发式方法相提并论。电路或线宽没有限制。此外,示出了当最小线宽约束不起作用时,用于最小布线面积目标的最优线宽分配满足所有延迟约束作为相等。因此,可以将EWA应用于具有相等延迟约束的问题,例如时钟树。此外,此属性和其他属性足够通用,可以扩展到更高阶的延迟模型,并且可以用于增强其他优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号