首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Canonical symbolic analysis of large analog circuits with determinant decision diagrams
【24h】

Canonical symbolic analysis of large analog circuits with determinant decision diagrams

机译:具有行列式决策图的大型模拟电路的规范符号分析

获取原文
获取原文并翻译 | 示例

摘要

Symbolic analysis has many applications in the design of analog circuits. Existing approaches rely on two forms of symbolic-expression representation: expanded sum-of-product form and arbitrarily nested form. Expanded form suffers the problem that the number of product terms grows exponentially with the size of a circuit. Nested form is neither canonical nor amenable to symbolic manipulation. In this paper, we present a new approach to exact and canonical symbolic analysis by exploiting the sparsity and sharing of product terms. It consists of representing the symbolic determinant of a circuit matrix by a graph-called a determinant decision diagram (DDD)-and performing symbolic analysis by graph manipulations. We show that DDD construction, as well as many symbolic analysis algorithms, takes time almost linear in the number of DDD vertices. We describe an efficient DDD-vertex ordering heuristic and prove that it is optimum for ladder-structured circuits. For practical analog circuits, the numbers of DDD vertices are several orders of magnitude less than the numbers of product terms. The algorithms have been implemented and compared respectively to symbolic analyzers ISAAC and Maple-V in generating the expanded sum-of-product expressions, and SCAPP in generating the nested sequences of expressions.
机译:符号分析在模拟电路的设计中有许多应用。现有方法依赖于符号表达表示形式的两种形式:乘积和形式的扩展和任意嵌套的形式。扩展形式会遇到乘积项的数量随电路大小呈指数增长的问题。嵌套形式既不规范也不适合符号操纵。在本文中,我们通过利用产品术语的稀疏性和共享性,提出了一种进行精确和规范的符号分析的新方法。它包括通过称为“行列式决策图”(DDD)的图形表示电路矩阵的符号行列式,并通过图形操作执行符号分析。我们表明,DDD构造以及许多符号分析算法在DDD顶点数量上花费的时间几乎是线性的。我们描述了一种有效的DDD-顶点排序试探法,并证明了它对于梯形结构电路是最佳的。对于实际的模拟电路,DDD顶点的数量比乘积项的数量少几个数量级。该算法已实现,并分别与符号分析器ISAAC和Maple-V生成了扩展的乘积和表达式,并与SCAPP生成了嵌套的表达式序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号