首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Compact reduced-order modeling of weakly nonlinear analog and RF circuits
【24h】

Compact reduced-order modeling of weakly nonlinear analog and RF circuits

机译:弱非线性模拟和RF电路的紧凑降阶建模

获取原文
获取原文并翻译 | 示例

摘要

A compact nonlinear model order-reduction method (NORM) is presented that is applicable for time-invariant and periodically time-varying weakly nonlinear systems. NORM is suitable for model order reduction of a class of weakly nonlinear systems that can be well characterized by low-order Volterra functional series. The automatically extracted macromodels capture not only the first-order (linear) system properties, but also the important second-order effects of interest that cannot be neglected for a broad range of applications. Unlike the existing projection-based reduction methods for weakly nonlinear systems, NORM begins with the general matrix-form Volterra nonlinear transfer functions to derive a set of minimum Krylov subspaces for order reduction. Moment matching of the nonlinear transfer functions by projection of the original system onto this set of minimum Krylov subspaces leads to a significant reduction of model size. As we will demonstrate as part of comparison with existing methods, the efficacy of model reduction for weakly nonlinear systems is determined by the achievable model compactness. Our results further indicate that a multipoint version of NORM can substantially improve the model compactness for nonlinear system reduction. Furthermore, we show that the structure of the nonlinear system can be exploited to simplify the reduced model in practice, which is particularly effective for circuits with sharp frequency selectivity. We demonstrate the practical utility of NORM and its extension for macromodeling weakly nonlinear RF communication circuits with periodically time-varying behavior.
机译:提出了一种紧凑的非线性模型降阶方法(NORM),该方法适用于时不变且周期性时变的弱非线性系统。 NORM适用于一类弱非线性系统的模型降阶,该系统可以通过低阶Volterra函数系列很好地表征。自动提取的宏模型不仅捕获了一阶(线性)系统特性,而且还捕获了重要的重要二阶效应,这些效应在广泛的应用中都不能忽略。与现有的用于弱非线性系统的基于投影的归约方法不同,NORM从常规矩阵形式的Volterra非线性传递函数开始,以导出一组最小Krylov子空间用于降阶。通过将原始系统投影到这组最小Krylov子空间上,非线性传递函数的矩匹配导致模型尺寸的显着减小。作为与现有方法比较的一部分,我们将证明,弱非线性系统的模型简化效果取决于可实现的模型紧凑性。我们的结果进一步表明,NORM的多点版本可以大大提高非线性系统简化的模型紧凑性。此外,我们表明,非线性系统的结构可以在实践中用于简化简化模型,这对于具有明显频率选择性的电路特别有效。我们演示了NORM的实用性及其对具有周期性时变行为的微非线性RF通信电路进行宏建模的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号